《美國化學會:2025 CRISPR技術新進展:醫療領域的革新潛力研究報告(英文版)(36頁).pdf》由會員分享,可在線閱讀,更多相關《美國化學會:2025 CRISPR技術新進展:醫療領域的革新潛力研究報告(英文版)(36頁).pdf(36頁珍藏版)》請在三個皮匠報告上搜索。
1、CRISPR:UPDATES ON THE GROWING IMPORTANCE OF THIS TECHNOLOGYCAS INSIGHTSCRISPR(clustered regularly interspaced short palindromic repeats)and CRISPR-associated proteins(Cas)are naturally occurring mechanisms in bacteria and archaea that work as a defense mechanism against viral infection that have sin
2、ce been harnessed to enable precise and efficient genome editing in a variety of organisms.16 This technology has revolutionized the field of genetic engineering and therapeutic development,1,79 offering unprecedented opportunities to advance our understanding of genetic diseases,develop novel thera
3、pies,and potentially cure previously intractable conditions.1 However,it is important to recognize its broader potential in medical diagnosis,synthetic biology,agriculture and food,and environmental bioremediation.For example,CRISPR/Cas has been harnessed for plant genome editing17,18 to develop cro
4、ps that are high-yielding and resistant to abiotic and biotic stresses,and around 13%of CRISPR-related documents are associated with the application of CRISPR in plants and agricultural use-according to our search in the CAS Content CollectionTM.In this report,we examine data from the CAS Content Co
5、llection,the largest human-compiled multi-disciplinary database of published documents and substances,to highlight the latest advances and developments in CRISPR technology,with a focus on its potential in medicine.IntroductionCRISPR INSIGHT REPORT|3From nature to the lab:How does the CRISPR/Cas sys
6、tem work?In bacteria,the CRISPR/Cas system works by capturing snippets of DNA from invading viruses and storing them.When the same virus attacks again,the bacteria can quickly produce segments of a molecule called ribonucleic acid(RNA)to target the viral DNA.This RNA guides Cas proteins to the compl
7、ementary viral DNA,where they can act like molecular scissors,cutting the DNA and neutralizing the threat.3,10This natural mechanism has been adapted for use in gene editing.1,11 The most commonly used system,CRISPR/Cas9,involves a guide RNA(gRNA)that matches the target DNA sequence and the Cas9 enz
8、yme,which cuts the DNA at a specific desired location.This break in the DNA can then be repaired by the cells natural repair mechanisms,allowing for the insertion,deletion,or modification of genes.12,13 Figure 1 summarizes both the role of Cas9 in nature and its use as a genome-editing tool.Since it
9、s adaptation for gene editing,CRISPR/Cas technology has rapidly advanced,and researchers have developed various modifications of the original CRISPR/Cas9 system to improve specificity,efficiency,and versatility.The approval of the first CRISPR-Cas9-based gene editing therapy,Casgevy,approved by the
10、U.S.Food and Drug Administration(FDA)for the treatment of patients with transfusion-dependent-thalassemia,marked a significant milestone in CRISPR technology development.The same therapy has also been approved in Europe and the U.K.with the additional indication of sickle cell disease.1416Figure 1.C
11、RISPR/Cas9 system in nature(left)versus its adaptation for genome editing(right).S,Spacer;R,Repeats.OutcomeTarget DNA cutTarget searchCas9&gRNAproducedtracrRNAcas9RRSTargetPhage genomeDNA destroyedProkaryotic cell(immune system)Eukaryotic cell(genome editing)Custom sgRNAdesigned by scientistDelivery
12、 of genome editing toolsChromatinNucleusDNA editedAmong the key milestones for CRISPR(Figure 2),understanding of CRISPR-mediated mechanisms has significantly improved.Firstly,the natural CRISPR defense mechanism that protects bacteria was defined in three basic stages(Figure 3A):adaptation(spacer ac
13、quisition),CRISPR RNA(crRNA)maturation,and target interference.2830 Another breakthrough was the synthesis of single guide RNA(sgRNA)in the lab which combines the role of crRNA and trans-activating crRNA(tracrRNA)into a single molecule by fusing them together with a linker.26,31 The mechanism of CRI
14、SPR/Cas-9 genome editing contains three steps:recognition,cleavage,and repair,as depicted in Figure 3B.32 Figure 2.Timeline of significant events for CRISPR technology.The CRISPR timeline1987 Presence of CRISPR first reported in the Escherichia coli genome by Nakata et al.19Mid 2000s Functionality a
15、nd importance of CRISPR first described in prokaryotes wherein the CRISPR system is a key component of their adaptive immunity.23252020 Doudna and Charpentier awarded the Nobel Prize in Chemistry.272002 Cas discovered by Jansen et al.20Further identification in both Gram-positive and Gram-negative b
16、acteria,as well as archaea,led to the obvious questions regarding the relevance of CRISPR to these organisms.21,222012 Jennifer Doudna and EmmanuelleCharpentier propose that the bacterial CRISPR-Cas9 system could be used as a programmable toolkit for genome editing in humans and other animal species
17、.262023 First CRISPR-Cas9-based gene editing therapy,Casgevy,approved by the FDA for the treatment of patients with transfusion-dependent-thalassemia.14-16 CRISPR INSIGHT REPORT|5Figure 3.Mechanisms of CRISPR/Cas9.(A)CRISPR/Cas9 adaptive immunity.The CRISPR/Cas systems are composed of a Cas operon a
18、nd a CRISPR array,which comprises identical repeat sequences that are interspersed by phase-derived spacers.The CRISPR/Cas-mediated adaptive immunity consists of three stages:adaptation,maturation,and interference.(B)CRISPR/Cas9-mediated genome engineering.The synthetic sgRNA guides Cas9 in introduc
19、ing a double-strand break in the target DNA.The double-strand break is repaired by DNA repair mechanisms.Figures were created with www.BioR and adapted from Jiang and Doudna(Jiang F,Doudna,2017.Annu.Rev.Biophys.46:50529).crRNA,CRISPR RNA;PAM,protospacer adjacent motif;sgRNA,single guide RNA;tracrRNA
20、,trans-activating crRNA.sgRNACas9sgRNA(crRNA+tracrRNA)Double stranded break(DSB)Endogenous DNA repairs at theDSB siteHomology directed repairKnocked-in DNAsequence of interest(Precise gene modification)InsertionDonor DNADeletionSubstitution(Random mutations causedisruption of gene function)Nonhomolo
21、gous end joiningPAM5335353355Spacer acquisitioncrRNA biogenesisTarget interferenceLocusCas operonTranscriptionSpacersRepeatsPre-crRNAcrRNASite-specific cleavageCas9Cas9PAMcrRNAtracrRNAComplementary foreign DNAcrRNA maturation(RNase III processing)IntegrationInvasive viral DNAProtospacerCas1-Cas2CRIS
22、PR arrayPAMtracrRNAtracrRNACas9Cas1Cas2Csn2ABCRISPR/Cas systems have been divided largely into two classes,six types and 48 subtypes(Figure 4).33 Class 1 systems include Types I,III,and IV,which use multiprotein complexes to destroy nucleic acids,while class 2 systems include Types II,V,and VI,which
23、 use single proteins.34Below is a brief overview of natural Cas nucleases and engineered variants that have been adopted for use as therapeutics.Class 1 CRISPR/Cas systems Class 1 systems require multiple Cas proteins to come together in a complex to mediate interference against foreign genetic elem
24、ents,limiting gene editing applications of class 1 systems.Class 1 systems are further divided into three CRISPR/Cas types based on the presence of a specific signature protein:Type I contains Cas3,Type III contains Cas10,and Type IV contains Csf1,a Cas8-like protein.35Class 2 CRISPR/Cas systems Unl
25、ike the Class 1 CRISPR/Cas system,the effector module of the Class 2 CRISPR/Cas system is only a single protein with multiple domains and functions.36 Class 2 CRISPR/Cas systems are further divided into three types:Type II,Type V,and Type VI.CRISPR classificationType IIType IIIType VsgRNAHNHTarget s
26、equenceREC lobeCas9Linker loopsgRNA(crRNA+tracrRNA)RuvCdsDNAPAM5335NUC lobe35Cas12asgRNATarget sequenceREC lobeLinker loopcrRNARuvCdsDNAPAM533355NUC lobessDNACollateral activity3ssDNACas12f/Cas14Target sequenceREC lobeLinker loopcrRNANUC lobessDNACollateral activitysgRNA553Type VIRNA3Cas13Target seq
27、uenceREC lobeLinker loopcrRNAPFSHEPNNUC lobessDNACollateral activitysgRNA553Class IIClass ICsf ComplexType IVcrRNAPAM533355Nuclease?CasDinGdsDNACas3Type IcrRNALinker loopPAMHDsgRNA533355dsDNAssDNACollateral activityTarget sequenceCascade ComplexCas10-Csm/Cmr ComplexcrRNACoding strandTemplate strandc
28、rRNACas10RNAPTranscriptCsm3553DNA55Figure 4.Schematic depiction of various CRISPR/Cas system types and their cleavage characteristics.The CRISPR/Cas system is classified into two classes based on the effector molecules involved.Class I systems are characterized by multi-unit effectors,while Class II
29、 systems involve a single effector.Each class is further divided into three types,distinguished by their catalytic domain and target nucleotide specificity.The illustration was created using www.BioR.CRISPR INSIGHT REPORT|7Therapeutic possibilities with CRISPRThe concept of gene therapy was introduc
30、ed by Friedmann and Roblin in 1972.37 Zinc finger nucleases(ZFN)and transcription activator-like effector nucleases(TALENs)were developed as mainstream tools to evaluate the possibility of targeting or editing genes to treat and cure diseases.However,both methods have unfavorable characteristics,mak
31、ing the development of effective gene therapy challenging.3841Since then,CRISPR/Cas has been defined and explored as a potential therapeutic approach for disorders previously believed to be incurable or difficult to treat.These include certain types of cancer,infectious diseases,and various genetic
32、disorders,among others.CRISPR/Cas technology has various key applications in the field of therapeutics,the most prominent of which is the ability to correct or replace mutated or disease-causing gene(s).42 As of today,numerous CRISPR-based therapeutics are in the pre-clinical stage of development,an
33、d many are undergoing clinical trials to validate their safety and efficacy for diverse disease conditions,with one CRISPR therapeutic being U.S.FDA approved.CRISPR therapeutics publication landscape at a glanceA quantitative analysis of data from the CAS Content Collection(19952024)revealed 39,000
34、academic journal articles and over 14,000 patents on the application of CRISPR to therapeutics.Publications sharply rose in 2008 and have steadily increased ever since,with an average growth rate of 54%in the last decade.This total rise in publications is primarily led by academic journal articles;h
35、owever,patents have shown a larger average yearly growth rate of 72%in the last decade,compared to 50%for journals,demonstrating an increase in commercial interest.Key commercial assignees of patents in the field of CRISPR therapeutics include Regeneron Pharmaceuticals in the U.S.,CRISPR Therapeutic
36、s in Switzerland,and Shandong Shunfeng Biotechnology in China,while non-commercial activity is led by the Chinese Academy of Sciences,a group of 124 individual research institutions(Figure 5).43CRISPR INSIGHT REPORT|7Figure 5.Leading commercial(A)and non-commercial(B)patent assignees in the field of
37、 CRISPR between 20042023.BANumber of patent publicationsChinese Academy of SciencesThe Broad InstituteUniversity of CaliforniaHarvard CollegeChinese Academy of Agricultural SciencesHuazhong Agricultural UniversityStanford UniversityZhejiang UniversityJiangnan UniversityChina Agricultural UniversityM
38、assachusetts Institute of TechnologyAcademy of Military Medical Science Peoples Liberation Army of ChinaZhejiang UniversityYangzhou UniversityThe General Hospital Corporation020040015035010030050250450ChinaUnited StatesNumber of patent publicationsRegeneron Pharmaceuticals Inc.CRISPR Therapeutics AG
39、Shandong Shnufeng Biotechnology Co.,Ltd.Editas Medicine Inc.Emendo Bio Inc.Beam Therapeutics Inc.Shenzhen Biocan Technologies Co.,Ltd.Mammoth Biosciences Inc.Flagship Pioneering Inc.Arbor Biotechnologies Inc.Intellia Therapeutics Inc.Childrens Medical Center CorporationChina Tobacco Yunnan Industria
40、l Co.,Ltd.Metagenomi Technologies LLCNanjing Superyears Gene Technology Co.,Ltd0408030702060105090ChinaSwitzerlandUnited StatesHot topics in the CRISPR publication landscape:therapeutics targeting diseasesAmong the various diseases or disorders currently being investigated,the majority of documents
41、in the CRISPR therapeutics dataset focus on cancer and infectious diseases(Figure 6).The publication trend also shows a significant increase in the number of CRISPR articles focused on these two conditions.Other conditions investigated include blood disorders,genetic disorders,nervous system disorde
42、rs,cardiovascular diseases,respiratory diseases,immune diseases,and metabolic disorders.35%24%22%14%11%9%8%25%10%9%7%4%3%3%3%1%1%4%4%2%Infectious diseasesBlood disordersGenetic disordersNervous system disordersCardiovascular diseasesRespiratory diseasesImmune diseasesMetabolic disordersDigestive sys
43、tem disordersCancerJournal(outer donut),Patent(inner pie),ACRISPR INSIGHT REPORT|9CancerImmuneBloodMetabolicInfectiousRespiratoryGeneticCardiovascularNervous systemDigestive systemFigure 6.(A)Distribution and(B)time trends for CRISPR documents co-occurring with various disease conditions.Data includ
44、es journal and patent publications from the CAS Content Collection.B1,4001,2001,000800600200400Number of journal publicationsPublication year020112013201520172019202120234504003503002502001501005002011201520192013201720212023500400300200100Number of patent publicationsPublication year020112013201520
45、172019202120232502001001505002011201520192013201720212023Figure 7A.Publication frequencies of potential gene targets occurring in the CRISPR dataset retrieved from the CAS Content Collection.Data includes patent and journal publications for the period 19952024 and is based on CAS indexing.Note that
46、data for 2024 is incomplete due to the time of data extraction and encompasses data for January to June.Figure 7B.Time trends of some of the most highly occurring potential gene targets in the CRISPR dataset retrieved from the CAS Content Collection.Data includes patent and journal publications for
47、the period 2014-2023 and is based on CAS indexing.Regarding target genes,TP53,c-myc,the hemoglobin beta subunit(HBB)and c-Ki-Ras are most commonly associated with CRISPR publications.In particular,TP53 has seen a rapid increase over the last few years(Figure 7).GenesYear50040030020010009075604530150
48、Number of publicationsNumber of publicationsTP53c-mycHBBc-Ki-RasBRCA1DMDBcl-2ERBB1ERBB2CDKN2ACCL2CFTRAPCTGFB1TRPAX6ICAM1N-rasHPRTHLA-ACXCL1RB1NF1HLA-BIL-6COL1A1 SOD1CXCL10LDLRRAG1APOEHLA-CIL1BFasMDM22014201520172016201920182021202020232022TP53c-mycBRCA1ERBB1c-Ki-RasHBBCCL2ERBB2Bcl-2DMDCDKN2ACRISPR I
49、NSIGHT REPORT|11Figure 8.Co-occurrence of cancer subtypes with genes in the CRISPR dataset retrieved from the CAS Content Collection.Data includes patent and journal publications for the period 19952024.CancerFundamentally,cancer originates from activating and inactivating mutations or from the dysr
50、egulation of the epigenome.At the cellular level,altered metabolism,cell structure,and migration facilitate the expansion of cancer cells.Eventually,cancer cells circumvent the immune defense mechanism of the host and co-exist with normal cells.Understanding the complex genomic,cellular,and tissue l
51、evel changes is crucial for the developing more effective treatment options and improving outcomes.CRISPR has had a significant impact on our understanding of cancer biology and is continuously driving new discoveries in the field.44Multiple gene candidates are being studied in cancer in the context
52、 of CRISPR.Figure 8 below shows the co-occurrence of cancer types and genes found in the CRISPR dataset retrieved from the CAS Content Collection,and Table 1 shows the variety of applications of CRISPR to cancer therapy.Table 1.Approaches to using CRISPR/Cas technology in cancer.Therapeutic Correcti
53、ng driver mutations in oncogenes or tumor suppressor genes4554 Modifying or silencing epigenetic markers5559 Supporting immunotherapy6064 Targeting mutations that determine drug response or susceptibility6571 Inactivating carcinogenic viral infections7276Disease pathology Creating tumor models and o
54、rganoids195197 Creating high-throughput genetic screens198200Breast cancerAcute myeloid leukemiaLiver cancerLung cancerRectal cancerMelanomaGlioblastomaKidney cancerProstate cancerTP53:120BRCA1:32ERCC1:18c-Ki-Ras:50c-myc:36ERCC2:16APC:26ERBB2:15ERBB1:33XRCC1:13ERCC3:12N-ras:12Bcl-2:12NF1:10c-Ki-Ras2
55、:9CDKN2A:8ERCC6:8RB1:6MGMT:5HBB:4VHL:4ICAM1:4LPL:4CCL2:4JUN:4CXCL1:4fos:4Cancer subtypeGeneInfectious diseases Infectious diseases represent the second largest subset of CRISPR-related documents in the CAS Content Collection.Of the journal and patent publications mentioning human diseases,infectious
56、 diseases account for 25%and 22%,respectively.Over the past few years,there has been a significant increase in the number of documents on infectious diseases and CRISPR/Cas technology.The majority of these documents focus on anti-viral studies.CRISPR/Cas technology has emerged as a promising alterna
57、tive to develop therapeutics against various pathogens via the following methods:7779 Targeting the pathogen genes required for replication,or entering or infecting the host cells Altering the host genes required by the pathogen to cause infection Modifying the genes responsible for drug resistance
58、or susceptibilityBlood disorders CRISPR/Cas technology possesses an interesting possibility of providing a cure for patients with inherited monogenic blood diseases like sickle cell anemia and-thalassemia.As previously highlighted,Casgevy was the first U.S.FDA-approved CRISPR therapeutic and is an a
59、utologous gene therapy that targets the BCL11A gene,preventing red blood cells from adopting the sickle shape.80 Other gene-targeting therapies for the treatment of sickle cell anemia and-thalassemia are currently in clinical trials.81 Genetic disorders Among the many promising possibilities of usin
60、g CRISPR-based therapeutics,their translational use in monogenic human genetic diseases has the potential to provide long-term therapy with a single treatment.Genetic disorders can be treated with the help of CRISPR by editing the defective(disease-causing)gene or by editing the enhancer or regulato
61、r of the defective gene.Numerous studies have shown promising results by using these two approaches.Genetic disorders for which CRISPR-based therapeutics have been investigated include Duchenne muscular dystrophy(Dystrophin DMD gene),Huntingtons disease(Huntingtin HTT gene),and glaucoma(MYOC).8284Ne
62、rvous system disorders The publication rate of CRISPR-related documents on Alzheimers and Parkinsons diseases has increased in recent years.CRISPR/Cas9 technology has gained popularity in the field of neurodegenerative diseases due to its short experimental duration and easy molecular engineering re
63、quirements.It is currently being extensively utilized for building disease models,identifying pathogenic genes through screening,and for targeted therapy.8591 CRISPR in practiceClinical developmentOver the last decade,CRISPR has advanced significantly in clinical research,with numerous trials launch
64、ed to explore its potential in therapeutics,and the first CRISPR-based medicine was approved in just 11 years.1416Figure 9A shows the steady increase in the number of CRISPR-based therapeutics in development over the past decade.There are currently 142 CRISPR therapeutics in different stages of deve
65、lopment.Of these,10%are in Phase I,11%in Phase II,and 1%in Phase III clinical trials.The majority(77%)are in the pre-clinical stage(Figure 9B).CRISPR INSIGHT REPORT|13CRISPR pre-clinical research and clinical trials are targeting a wide range of diseases,from rare genetic disorders and blood disease
66、s to various forms of cancer and infectious diseases such as human immunodeficiency virus(HIV),tuberculosis,and COVID-19(Figure 10).Figure 9.(A)Year-wise distribution of CRISPR-based therapeutics in pre-clinical and clinical trials.(B)Current status of CRISPR-based therapeutics in various stages of
67、development.Data taken from Pharmaproject Citeline Clinical Intelligence.Note that data for 2024 is incomplete due to time of data extraction and encompasses data for January to June.Figure 10.Distribution of CRISPR-based therapeutics under development among different disease groups.The stacked bar
68、shows the split of therapeutics among various stages of development for each disease group.The percentage distribution among disease groups has been mentioned in parentheses.Data from Pharmaproject Citeline Clinical Intelligence.Note that data for 2024 is incomplete due to time of data extraction an
69、d encompasses data for January to June.ABNumber of CRISPR-based therapeutics in development16014012010080604020020152016201720182019Year2020 2021 2022 2023 2024Pre-clinical110Phase l14Phase II15Phase III 2Registered 1Disease groupNumber of CRISPR-based therapeuticsAnticancerBlood and clottingSensory
70、MusculoskeletalAlimentary/metabolicNeurologicalCardiovascularAnti-infectiveImmunologicalRespiratoryDermatological010203040Pre-clinicalPhase IPhase IIPhase III Registered (12%)(9%)(7%)(12%)(9%)(4%)(10%)(8%)(3%)(1%)(25%)The distribution of CRISPR-based therapeutics in pre-clinical development and clin
71、ical trials is shown in Figures 11A and 11B,respectively.Most pre-clinical research and clinical trials are focused on using CRISPR-related therapies as anticancer treatments,with solid cancers being the primary target.Figure 11A.Distribution of CRISPR-based therapeutics in the pre-clinical stage of
72、 development across disease groups,individual diseases,and their biological targets.Data retrieved from Pharmaproject Citeline Clinical Intelligence in June 2024.NOS,not specified;NA,not available.Disease groupDisease nameTarget nameNOS:55NA:16Dystrophin:3DDR1:1PTK7:1SLC39A6:1DNA pol:1CD70:1NFE2L2:1
73、GPC3:1CD83:1PRPF31:1OTOF:1TGFBI:1VEGF-A:1DUX4L1:1LAMA1:1HAO1:1GAA:1C9orf72-SMCR8:1STMN2:1SOD1:1UBE3A:1TRR:1PMP22:1SCN9A:1Factor VIII:1Factor IX:1ALAS:1PCSK9:1AGT:1CFTR:1SERPINA1:1PRE-CLINICALAnticancer:22Sensory:14Solid cancer:12NOS cancer:12HM:2NSCLC:1NCC:1BCL:1BC:1ALM:1ODs:1RP:1CRD:1CD:1AMD:1DMD:7
74、CMD:1DM:2HD:3UC:1PH:1IBD:3AS:1CMT:1HA:2HeFH:2DCM:1HTN:1HSV:1NOS BI:1CF:1RTI:1NOS ROs:1CIPN:1SCD:1HCM:1FH:1HIV:1HBV:1JCV:1AAT:1hATTR:1Neutropenia:1Thalassaemia:1AD:1RIGI:1T1D:2ALS:5HB:3EB:1ATTRv amyloidosis:2Pompes disease:1Porphyria:1NOS HLD:2CDs,MDD,GAD:1Staph bacteria:1FSHD:2MD:1Retinoschisis:1NOS
75、 MD:1Hearing loss:1Alimentary/metabolic:12Neurological:11Blood and clotting:9Cardiovascular:8Anti-infective:7Unspecified:6Respiratory:4Dermatological:1Musculoskeletal:12CRISPR INSIGHT REPORT|15Figure 11B.Distribution of CRISPR-based therapeutics in the clinical stages(Phase I,II and III)of developme
76、nt across disease groups,individual diseases,and their biological targets.Data retrieved from Pharmaproject Citeline Clinical Intelligence in June 2024.NOS,not specified;NA,not available.Disease groupClinical trial phaseDisease nameTarget namePhase I:14VEGF-A:2TNFRSF17:2IL3RA:1PIk4:1USP1:2CD19:3PD-1
77、:1SOCS1:1ANGPTL3:1HBB:1NA:8CD70:1Lp(a):1NOS:3HBG1:1KLKB1 gene:1TTR:1Phase II:15Phase III:2Sensory:2Retinopathy:1BC,OC,PC,BPC cancer:1Solid cancer:2SCC,NSCLC:1HeFH/HoFH:1GI,NSCLC:1Thalassaemia:3AMD:1AML:1NHL:2SCD:4FH:1UTI:1HIV/AIDS:1T1D:1HAE:1hATTR:1BCL/TCL:1CVD NOS:1ALL:1BCL:1MM:2Anticancer:13Cardio
78、vascular:3E.coli prophylaxis:1Blood and clotting:7Anti-infective:3Alimentary/Metabolic:1Immunological:1Neurological:1Disease names:AML:Acute myeloid leukemia,NHL:non-Hodgkins lymphoma,MM:multiple myeloma,NOS:unspecified,SCD:sickle cell disease,FH:familial hypercholesterolemia,HeFH/HoFH:heterozygous/
79、homozygous familial hypercholesterolaemia,CVD:cardiovascular disease,AMD:wet age-related macular degeneration,BC:breast cancer,OC:ovarian cancer,PC:pancreatic cancer,BPH:benign prostatic hyperplasia,GI:gastrointestinal cancer,NSCLC:non-small cell lung cancer,SCC:squamous cell carcinoma,ALL:acute lym
80、phocytic leukemia,BCL:B-cell lymphoma,TCL:T-cell lymphomas,HAE:hereditary angioedema,HIV/AIDS:human immunodeficiency virus/acquired immunodeficiency syndrome,T1D:type 1 diabetes,UTI:urinary tract Infection,hATTR:hereditary transthyretin amyloidosis,HD:hereditary disease of metabolism,UC:ulcerative c
81、olitis,HD:Hepatic dysfunction,PH:primary hyperoxaluria,IBD:Inflammatory bowel disease,RIGI:Radiation-induced gastric injury,HM:Hematological Malignancies,HCC:hepatocellular carcinoma,NOS BI:unspecified bacterial Infection,HBV:hepatitis-B virus,HSV:herpes simplex virus,JCV:John Cunningham virus,RTI:r
82、espiratory tract Infection,Staph:staphylococcal,HA:haemophilia A,HB:haemophilia B,DCM:dilated cardiomyopathy,HCM:hypertrophic cardiomyopathy,HLD:Hyperlipidaemia,HTN:hypertension,EB:epidermolysis bullosa,NOS AD:unspecified autoimmune disease,CMD:congenital muscular dystrophy,DMD:Duchennes muscular Dy
83、strophy,FSHD:facioscapulohumeral muscular dystrophy,NOS MD:unspecified muscular dystrophy,MD:myotonic muscular dystrophy,AD:Alzheimers disease,ALS:amyotrophic lateral sclerosis,AS:angelman syndrome,CDs:Cognitive disorders,MDD:major depressive disorder,GAD:generalized anxiety disorder,CMT:CharcotMari
84、etooth disease,CIPN:chemotherapy-induced peripheral neuropathy,CF:cystic fibrosis,AAT:alpha-1 antitrypsin deficiency,NOS RDs:unspecified respiratory diseases,ODs:ocular disorders,CRD:cone-rod dystrophy,MD:macular dystrophy,RP:retinitis pigmentosa,CD:corneal dystrophy.Target names:IL3RA:Interleukin 3
85、 receptor alpha,CD19:CD19 molecule,TNFRSF17:TNF receptor superfamily member 17,Plk4:polo-like kinase 4,USP1:ubiquitination-specific proteases,NA:not applicable,NOS:unspecified,ANGPTL3:Angiopoietin-like protein 3,VEGF-A:vascular endothelial growth factor A,Lp(a):lipoprotein(a),SOCS1:suppressor of cyt
86、okine signaling 1,CD19:CD19 molecule,PD-1:programmed cell death 1,CD70:CD70 molecule,KLKB1:kallikrein B1,HBB:hemoglobin subunit beta,HBG1:hemoglobin subunit gamma 1,TTR:transthyretin,HAO1:hydroxyacid oxidase 1,GAA:glucosidase alpha,GPC3:glypican 3,NFE2L2:nuclear factor,erythroid 2 like 2,DDR1:discoi
87、din domain receptor tyrosine kinase 1,PTK7:protein tyrosine kinase 7(inactive),SLC39A6:solute carrier family 39 member 6,DNA pol:DNA polymerase theta,Factor VIII:coagulation factor VIII,Factor IX:coagulation factor IX,ALAS:5-aminolevulinate synthase 1,PCSK9:proprotein convertase subtilisin/kexin typ
88、e 9,AGT:angiotensinogen,LAMA1:laminin subunit alpha 1,DUX4L1:double homeobox 4 like 1(pseudogene),C9orf72-SMCR8:C9orf72-SMCR8 complex subunit,STMN2:stathmin 2,SOD1:superoxide dismutase 1,UBE3A:ubiquitin protein ligase E3A,PMP22:peripheral myelin protein 22,SCN9A:sodium voltage-gated channel alpha su
89、bunit 9,CFTR:CF transmembrane conductance regulator,SERPINA1:serpin family A member 1,PRPF31:pre-mRNA processing factor 31,OTOF:otoferlin,TGFBI:transforming growth factor beta induced.Delivery systems:The portal for therapeutic useDespite the potential of CRISPR,its therapeutic application faces som
90、e challenges,particularly in the area of cellular delivery systems.Effective and safe delivery of CRISPR components such as the Cas9 nuclease and gRNA to target cells and tissues is paramount for achieving the desired therapeutic outcomes while minimizing off-target effects and immune responses.9294
91、The choice of delivery method can significantly influence the efficiency,specificity,and safety of CRISPR-mediated gene editing.Carriers currently used for delivery fall into three general groups:viral vectors,non-viral vectors,and physical delivery methods(Figure 12).9599 Viral vectors dominate the
92、 publication landscape,with adeno-associated vectors(AAVs)being the most commonly represented.Electroporation and microinjection are the most widely used physical delivery methods.ADelivery systemsCRISPR/Cas9 systemsGene editingViral vectorsNon-viral vectorsPhysicaldeliveryAdeno-associatedvirusMicro
93、injectionLipid nanoparticleAdenovirusElectroporationPolymer nanoparticleLentivirusPlasmid DNASonoproationHydrodynamicinjectionCas9 RNPGold nanoparticleCell penetration peptideCas9 mRNA+sgRNACRISPR INSIGHT REPORT|17Table 2.Attributes of molecular diagnostic methods NGS,PCR,and CRISPR/Cas.138148cDNA,c
94、omplimentary deoxyribonucleic acid;CRISPR/Cas,clustered regularly interspaced short palindromic repeats/CRISPR associated proteins;DNA,deoxyribonucleic acid;PCR,polymerase chain reaction;RNA,ribonucleic acid.The utility of CRISPR/Cas technology is not limited to disease modification and has rapidly
95、evolved into a powerful tool for disease diagnosis.138140 Its ability to detect specific genetic sequences is invaluable for identifying infectious diseases,genetic disorders,and even cancers.Quantitative polymerase chain reaction(qPCR),isothermal amplification,and next-generation sequencing(NGS)are
96、 currently used in routine clinical diagnostics,141144 but all have pitfalls.144146 Therefore,the CRISPR/Cas system can open a new window of possibilities for genetic diagnostics that integrates the ease of use and cost efficiency of isothermal amplification with the diagnostic accuracy of qPCR.More
97、over,the CRISPR/Cas system can fulfill the ASSURED criteria(affordable,sensitive,specific,user-friendly,rapid,equipment-free,delivered)set by the World Health Organization147 for infectious disease diagnostics.Table 2 compares the three molecular detection methods.CRISPR diagnosticsMethodTime requir
98、ed Response proceduresAdvantagesDisadvantagesNGS20 hoursLibrary preparation,NGS sequencing,bioinformatics analysisComprehensive analysis of all nucleic acids,rapid and preliminary identification of new pathogensExpensive equipment,complex operation,and not all genomes are availableqPCR1.5 hoursRever
99、se transcription,RNA-cDNA hybridization denaturation,PCR amplification Gold standard,currently the most common detection methodRequires complex laboratory infrastructure and specialized technical personnelCRISPR/Cas0.6 hoursDNA amplification,Cas reactionLow cost,high sensitivity,no need for complex
100、instruments and equipment,fast and convenient for field testingNot widely used in clinical trials,pending clinical validationFigure 12.(A)Schematic representation of CRISPR/Cas9 delivery systems.(B)Distribution of documents related to CRISPR delivery systems.Data includes journal and patent publicat
101、ions from the CAS Content Collection from 19952024.100137Physical delivery 36%Viral vectors 42%Non-viral vectors 22%Adeno-associated 22%Hydrodynamic injection 2%Sonoporation 2%Electroporation 17%Microinjection 15%CPP 2%Gold NP 5%Polymer NP 4%Adenovirus 6%Lentivirus 14%Lipid NP 11%BData from the CAS
102、Content Collection shows more than 6,500 journal articles and nearly 3,000 patent publications on the application of CRISPR technology in disease diagnosis from 2004 to 2023 which is 17%and 21%of total journal articles and patent publications,respectively,related to CRISPR therapeutics(Figure 13).Th
103、e publication trend of CRISPR in disease diagnosis has shown a significant increase in recent years,reflecting its growing importance as a diagnostic tool in molecular biology and medical research.Since the discovery of CRISPRs potential in 2012,there has been an exponential rise in journal and pate
104、nt publications,especially after 2015.A notable increase in publications(44%)between 2020 and 2022 is observable and coincides with the COVID-19 pandemic.Patent publications on CRISPR-based disease diagnostics have also surged in recent years,paralleling the technologys rapid adoption in both resear
105、ch and clinical applications.Figure 13.Journal and patent publications trends on CRISPR-based disease diagnostics from the CAS Content Collection from 2004 to 2023.1,6001,4001,2001,0008006004002000YearNumber of publications20042005200620072008200920102011201220132014201520162017201820192020202120222
106、023JournalsPatentsJournals6,668Patents2,933CRISPR INSIGHT REPORT|19Figure 14.Time trends of publications related to artificial intelligence(AI)in the CRISPR dataset.Data includes journal and patent publications from the CAS Content Collection for the period 20102024.Note that data for 2024 is incomp
107、lete due to the time of data extraction and encompasses data for January to June.With the rise of artificial intelligence(AI),interest in its application to CRISPR/Cas technology has increased,as reflected by the growth of publications over the last decade.The incorporation of AI into CRISPR-mediate
108、d gene editing promises to improve both the precision and efficiency of the process.AI also possesses the ability to decipher complex genetic information,facilitate disease diagnosis,and inform on prognosis,going hand-in-hand with CRISPR capabilities.149AI may be used to design novel Cas proteins,ai
109、d in high-throughput screening of sgRNAs,and predict on-and off-target efficacy of particular CRISPR/Cas models.150170 CRISPR and artificial intelligenceTo read more about the application of AI to CRISPR/Cas technology,refer to the following review articles:Dixit,S,et al.Advancing genome editing wit
110、h artificial intelligence:opportunities,challenges,and future directions.Front Bioeng Biotechnol 2023,11,1335901.DOI:10.3389/fbioe.2023.1335901.Lee,M.Deep learning in CRISPR-Cas systems:a review of recent studies.Front Bioeng Biotechnol 2023,11,1226182.DOI:10.3389/fbioe.2023.1226182.6005004003002001
111、000YearNumber of publications201020112012201320142015201620172018201920202021202220232024JournalsPatentsIn the past decade,capital investment in CRISPR/Cas technology has seen a remarkable increase,with a sharp increase starting in 2018 and persisting until 2021,with investments exceeding a staggeri
112、ng$11 billion USD in 2021(Figure 15A).An overwhelming majority of these investments involved companies originating in the U.S.(96%).Other key players in terms of geographical distribution,though of much smaller magnitude,included Switzerland,China,and Japan(Figure 15B).Biotechnology,pharmaceuticals,
113、and drug discovery together account for almost 90%of the capital invested(Figure 15C).Other industries with smaller contributions include agricultural chemicals,diagnostic equipment,and laboratory services,among others(Figure 15C).The largest influx of capital in the biotechnology industry occurred
114、with two major spikes in 2019 and 2021.A record number of deals were made in 2021,with some of the largest involving Century Therapeutics and Mammoth Biosciences($150 million),and Caribou Biosciences and AgBiome($100 million).The most consistent influx in capital appears to be in drug discovery unti
115、l 2021,with a plunge in 2022 and an uptick after 2022 (Figure 15D).Commercial interest in CRISPR technologyABCCapital invested(USD)Number of dealsYear14B12B10B8B6B4B2B080706050403020100201320142015201620172019202220232024201820202021China(1%)Switzerland(2%)Japan(0.4%)Others(1%)U.S.(96%)Laboratory se
116、rvices(0.4%)Diagnostic equipment(1%)Drug delivery(0.1%)Biotechnology(52%)Decision/risk analysis(1%)Agricultural chemicals(1%)Discovery tools(healthcare)(2%)Specialty chemicals(7%)Drug discovery(9%)Pharmaceuticals(27%)Primary industry codesCRISPR INSIGHT REPORT|21Figure 15.Commercial interest in CRIS
117、PR/Cas technology.(A)Capital invested in and number of deals in CRISPR.(B)Geographical distribution of capital invested in CRISPR.(C)Breakdown of capital invested as per primary industry codes and(D)their time trends over the last decade(20132024).Data from PitchBook Data,Inc.Data has not been revie
118、wed by PitchBook analysts.DBiotechnologyDrug discoveryAgricultural chemicalsDrug delivery12B10B8B6B2B4BCapital invested(USD)Year0201320142015201620172018201920202021202220232024900M750M600M450M300M150M0201320172020 20212014 2015 20162018 2019202220242023Diagnostic equipmentDespite the widespread acc
119、eptance of CRISPR/Cas technology in gene editing,owing to its versatility and ease of use,several challenges remain.These include the ethical implications of genetic tampering,171175 potential for off-target effects,176183 packaging and delivery,184186 DNA damage and toxicity,187189 and regulatory h
120、urdles.EthicsGenetic manipulation of eukaryotic organisms raises several ethical dilemmas.Jennifer Doudna,one of the pioneers behind CRISPR/Cas technology,expressed her concern at the 2016 American Association for the Advancement of Science Annual Meeting,stating that one of her biggest fears is“wak
121、ing up one morning and reading about the first CRISPR baby,”which would undoubtedly create public backlash and regulatory uproar.171 In 2018,her fears were realized when Chinese researcher He Jiankui claimed that he used CRISPR to alter the DNA of seven embryos of couples,where the males were HIV ca
122、rriers,to immunize the babies against HIV.This resulted in the birth of two twin girls,the first CRISPR babies.172,173In 1979,Beauchamp and Childress proposed the four principles of biomedical ethics:beneficence,nonmaleficence,respect for autonomy,and justice.174 In summary,the proposed“treatment”sh
123、ould result in a positive outcome/benefit(beneficence),avoid or minimize harm as much as possible(nonmaleficence),require informed consent from patients(autonomy),and ensure equitable access to treatment(justice).When looking at applications and study of CRISPR/Cas genome editing,researchers should
124、take these principles into consideration.175Other ethical concerns are legal regulations,the use of the technology at home by communities without medical supervision(biohackers),175 and the use of CRISPR/Cas for non-therapeutic purposes like enhancements and eugenics.Off-target effectsIn the natural
125、 setting,CRISPR/Cas systems have evolved to tolerate mismatches between the gRNA and the target DNA to a certain extent.However,this property is not applied to genome engineering applications in the laboratory,as it may result in the alteration of off-target sites.Numerous studies have reported off-
126、target activity at sites,ranging from a single base mismatch,to sites containing multiple consecutive mismatches or even nucleotide insertions or deletions.176179 High-throughput profiling studies exploring off-target effects have shown that their frequency is consistently lower in vivo as compared
127、with isolated genomic DNA.182183Packaging and delivery In vivo delivery of CRISPR/Cas9 into mammalian cells is generally accomplished using viral vectors.AAVs remain the preferred choice due to their low immunogenicity and high transduction efficiency.However,AAVs have limited packaging capacity,mak
128、ing it difficult to package all of the components required for successful application.184,185Another limiting factor for most gene editing components is their safe,efficient,and targeted delivery to the specific organ or tissue.If CRISPR/Cas9 components are delivered via a systemic approach,they may
129、 get destroyed and cleared by the body before reaching their target site.186DNA-damage toxicity and immunotoxicityCRISPR-based gene editing involves cutting DNA,which can inadvertently trigger cell death and growth inhibition rather than the intended genetic edit.187 Multiple simultaneous off-target
130、 edits can ultimately result in genomic rearrangements such as inversions,deletions,and chromosomal translocations and trigger DNA damage and stress response pathways.188190Immunogenic toxicity is another known limitation of any gene editing technology,including CRISPR/Cas.Pre-existing antibodies ag
131、ainst Cas9 and reactive T cells have been identified in humans,and Cas9 immunity has been associated with compromised therapeutic outcomes in various disease models.191194Regulatory hurdlesThe regulation of CRISPR-based gene editing varies between countries,and guidelines are still under development
132、 in some areas.In some countries,one regulatory agency oversees gene therapy,while other agencies regulate genetically modified organisms,creating a complex regulatory landscape for CRISPR-based therapeutics.Additionally,the long-term effects and safety of CRISPR-based therapeutics are not yet fully
133、 understood,which may contribute to lengthy and complex approval processes for these novel therapies.CRISPR:What challenges remain?CRISPR INSIGHT REPORT|23Concluding remarksSince the first use of CRISPR-based gene editing,the field has evolved at an exceptional pace,resulting in a plethora of public
134、ations exploring applications in disease management and diagnostics,as well as the identification of genes underlying various disorders.A considerable number of CRISPR-related publications appear to be connected to cancer and infectious diseases,while other diseases such as blood,genetic and nervous
135、 system disorders are also explored in the context of CRISPR/Cas technology.The use of CRISPR/Cas systems in disease diagnostics has also seen a surge,most notably after 2019.All of the research and development in the field has translated to a considerable increase in commercial interest in CRISPR-b
136、ased diagnostics and therapeutics over the last few years.Currently,more than 140 CRISPR-based therapeutics are in various stages of clinical trials,with approximately a quarter of them targeting a range of cancer subtypes.Despite the great strides and widespread acceptance of CRISPR/Cas technology
137、in gene editing,a few challenges remain in applying it for therapeutic purposes.The ongoing refinement of existing CRISPR components continues to improve the efficiency and specificity of CRISPR-based therapeutics.Expanding the targeting capabilities and optimizing delivery systems continue to aid i
138、n significant improvements in clinical outcomes.Ultimately,in the future,CRISPR-based therapeutics are likely to be developed successfully for myriads of diseases beyond cancer.CRISPR INSIGHT REPORT|231.Asmamaw,M.;Zawdie,B.Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing.Biologics
139、2021,15,353361.DOI:10.2147/btt.S326422.2.Redman,M.;King,A.;Watson,C.;King,D.What is CRISPR/Cas9?Arch Dis Child Educ Pract Ed 2016,101(4),213215.DOI:10.1136/archdischild-2016-310459.3.Loureiro,A.;da Silva,G.J.CRISPR/Cas:Converting A Bacterial Defence Mechanism into A State-of-the-Art Genetic Manipula
140、tion Tool.Antibiotics(Basel)2019,8(1).DOI:10.3390/antibiotics8010018.4.Mojica,F.J.M.;Montoliu,L.On the Origin of CRISPR/Cas Technology:From Prokaryotes to Mammals.Trends in Microbiology 2016,24(10),811820.DOI:10.1016/j.tim.2016.06.005.5.Hossain,M.A.CRISPR/Cas9:A fascinating journey from bacterial im
141、mune system to human gene editing.Prog Mol Biol Transl Sci 2021,178,6383.DOI:10.1016/bs.pmbts.2021.01.001.6.CRISPR in Nature.https:/innovativegenomics.org/crisprpedia/crispr-in-nature/(accessed 2024-08-01).7.Alamillo,J.M.;Lpez,C.M.;Martnez Rivas,F.J.;Torralbo,F.;Bulut,M.;Alseekh,S.Clustered regularl
142、y interspaced short palindromic repeats/CRISPR-associated protein and hairy roots:a perfect match for gene functional analysis and crop improvement.Curr Opin Biotechnol 2023,79,102876.DOI:10.1016/j.copbio.2022.102876.8.Li,T.;Yang,Y.;Qi,H.;Cui,W.;Zhang,L.;Fu,X.;He,X.;Liu,M.;Li,P.-f.;Yu,T.CRISPR/Cas9
143、therapeutics:progress and prospects.Signal Transduction and Targeted Therapy 2023,8(1),36.DOI:10.1038/s41392-023-01309-7.9.Li,Z.-H.;Wang,J.;Xu,J.-P.;Wang,J.;Yang,X.Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research.Military Medical Research 2023
144、,10(1),12.DOI:10.1186/s40779-023-00447-x.10.Westra,E.R.;van Houte,S.;Gandon,S.;Whitaker,R.The ecology and evolution of microbial CRISPR/Cas adaptive immune systems.Philosophical Transactions of the Royal Society B:Biological Sciences 2019,374(1772),20190101.DOI:doi:10.1098/rstb.2019.0101.11.Adli,M.T
145、he CRISPR tool kit for genome editing and beyond.Nature Communications 2018,9(1),1911.DOI:10.1038/s41467-018-04252-2.12.Redman,M.;King,A.;Watson,C.;King,D.What is CRISPR/Cas9?Arch Dis Child Educ Pract Ed 2016,101(4),213215.DOI:10.1136/archdischild-2016-310459.13.Panda,G.;Ray,A.Decrypting the mechani
146、stic basis of CRISPR/Cas9 protein.Progress in Biophysics and Molecular Biology 2022,172,6076.DOI:10.1016/j.pbiomolbio.2022.05.001.14.FDA Approves First Gene Therapies to Treat Patients with Sickle Cell Disease.2023.https:/www.fda.gov/news-events/press-announcements/fda-approves-first-gene-therapies-
147、treat-patients-sickle-cell-disease(accessed 2024-10-25).15.MHRA authorises world-first gene therapy that aims to cure sickle-cell disease and transfusion-dependent-thalassemia.2023.https:/www.gov.uk/government/news/mhra-authorises-world-first-gene-therapy-that-aims-to-cure-sickle-cell-disease-and-tr
148、ansfusion-dependent-thalassemia(accessed 2024-11-01).16.First gene editing therapy to treat beta thalassemia and severe sickle cell disease.2023.https:/www.ema.europa.eu/en/news/first-gene-editing-therapy-treat-beta-thalassemia-and-severe-sickle-cell-disease(accessed 2024-11-01).17.Li,J.-F.;Norville
149、,J.E.;Aach,J.;McCormack,M.;Zhang,D.;Bush,J.;Church,G.M.;Sheen,J.Multiplex and homologous recombinationmediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9.Nature Biotechnology 2013,31(8),688691.DOI:10.1038/nbt.2654.18.Shan,Q.;Wang,Y.;Li,J.;Zhang,Y.;Chen,K.;Liang,
150、Z.;Zhang,K.;Liu,J.;Xi,J.J.;Qiu,J.-L.;Gao,C.Targeted genome modification of crop plants using a CRISPR/Cas system.Nature Biotechnology 2013,31(8),686688.DOI:10.1038/nbt.2650.19.Ishino,Y.;Shinagawa,H.;Makino,K.;Amemura,M.;Nakata,A.Nucleotide sequence of the iap gene,responsible for alkaline phosphatas
151、e isozyme conversion in Escherichia coli,and identification of the gene product.J Bacteriol 1987,169(12),54295433.DOI:10.1128/jb.169.12.5429-5433.ReferencesCRISPR INSIGHT REPORT|2520.Jansen,R.;Embden,J.D.;Gaastra,W.;Schouls,L.M.Identification of genes that are associated with DNA repeats in prokaryo
152、tes.Mol Microbiol 2002,43(6),15651575.DOI:10.1046/j.1365-2958.2002.02839.x.21.Ishino,Y.;Krupovic,M.;Forterre,P.History of CRISPR/Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology.J Bacteriol 2018,200(7).DOI:10.1128/JB.00580-17.22.Sorek,R.;Kunin,V.;Hugenholtz,P.CRISP
153、R-a widespread system that provides acquired resistance against phages in bacteria and archaea.Nat Rev Microbiol 2008,6(3),18186.DOI:10.1038/nrmicro1793.23.Hille,F.;Charpentier,E.CRISPR/Cas:biology,mechanisms and relevance.Philos Trans R Soc Lond B Biol Sci 2016,371(1707).DOI:10.1098/rstb.2015.0496.
154、24.Ibrahim,A.U.,zsoz,M.,Saeed,Z.,Tirah,G.,Gideon,O.Genome Engineering Using the CRISPR Cas9 System.J Biomed Pharm Sci 2019,2(2).25.Mojica,F.J.;Diez-Villasenor,C.;Garcia-Martinez,J.;Soria,E.Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements.J Mol Evol 2
155、005,60(2),174182.DOI:10.1007/s00239-004-0046-3.26.Jinek,M.;Chylinski,K.;Fonfara,I.;Hauer,M.;Doudna,J.A.;Charpentier,E.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Science 2012,337(6096),816821.DOI:10.1126/science.1225829.27.Nobel Prize.2020.Available at:www.nobelpri
156、ze.org/prizes/chemistry/2020/press-release/(accessed 2024-11-01).28.Marraffini,L.A.CRISPR/Cas immunity in prokaryotes.Nature 2015,526(7571),5561.DOI:10.1038/nature15386.29.van der Oost,J.;Jore,M.M.;Westra,E.R.;Lundgren,M.;Brouns,S.J.CRISPR-based adaptive and heritable immunity in prokaryotes.Trends
157、Biochem Sci 2009,34(8),401407.DOI:10.1016/j.tibs.2009.05.002.30.Jackson,S.A.;McKenzie,R.E.;Fagerlund,R.D.;Kieper,S.N.;Fineran,P.C.;Brouns,S.J.CRISPR/Cas:Adapting to change.Science 2017,356(6333).DOI:10.1126/science.aal5056.31.Jiang,W.;Bikard,D.;Cox,D.;Zhang,F.;Marraffini,L.A.RNA-guided editing of ba
158、cterial genomes using CRISPR/Cas systems.Nat Biotechnol 2013,31(3),233239.DOI:10.1038/nbt.2508.32.Shao,M.;Xu,T.R.;Chen,C.S.The big bang of genome editing technology:development and application of the CRISPR/Cas9 system in disease animal models.Dongwuxue Yanjiu 2016,37(4),191204.DOI:10.13918/j.issn.2
159、095-8137.2016.4.191.33.Makarova,K.S.;Wolf,Y.I.;Iranzo,J.;Shmakov,S.A.;Alkhnbashi,O.S.;Brouns,S.J.J.;Charpentier,E.;Cheng,D.;Haft,D.H.;Horvath,P.;et al.Evolutionary classification of CRISPR/Cas systems:a burst of class 2 and derived variants.Nat Rev Microbiol 2020,18(2),6783.DOI:10.1038/s41579-019-02
160、99-x.34.Makarova,K.S.;Wolf,Y.I.;Alkhnbashi,O.S.;Costa,F.;Shah,S.A.;Saunders,S.J.;Barrangou,R.;Brouns,S.J.;Charpentier,E.;Haft,D.H.;et al.An updated evolutionary classification of CRISPR/Cas systems.Nat Rev Microbiol 2015,13(11),722736.DOI:10.1038/nrmicro3569.35.Koonin,E.V.;Makarova,K.S.;Zhang,F.Dive
161、rsity,classification and evolution of CRISPR/Cas systems.Curr Opin Microbiol 2017,37,6778.DOI:10.1016/j.mib.2017.05.008.36.Shmakov,S.;Smargon,A.;Scott,D.;Cox,D.;Pyzocha,N.;Yan,W.;Abudayyeh,O.O.;Gootenberg,J.S.;Makarova,K.S.;Wolf,Y.I.;et al.Diversity and evolution of class 2 CRISPR/Cas systems.Nat Re
162、v Microbiol 2017,15(3),169182.DOI:10.1038/nrmicro.2016.184.37.Friedmann,T.;Roblin,R.Gene therapy for human genetic disease?Science 1972,175(4025),949955.DOI:10.1126/science.175.4025.949.38.Kim,Y.G.;Cha,J.;Chandrasegaran,S.Hybrid restriction enzymes:zinc finger fusions to Fok I cleavage domain.Proc N
163、atl Acad Sci U S A 1996,93(3),11561160.DOI:10.1073/pnas.93.3.1156.39.Urnov,F.D.;Rebar,E.J.;Holmes,M.C.;Zhang,H.S.;Gregory,P.D.Genome editing with engineered zinc finger nucleases.Nat Rev Genet 2010,11(9),636646.DOI:10.1038/nrg2842.CRISPR INSIGHT REPORT|2540.Boch,J.;Scholze,H.;Schornack,S.;Landgraf,A
164、.;Hahn,S.;Kay,S.;Lahaye,T.;Nickstadt,A.;Bonas,U.Breaking the code of DNA binding specificity of TAL-type III effectors.Science 2009,326(5959),15091512.DOI:10.1126/science.1178811.41.Joung,J.K.;Sander,J.D.TALENs:a widely applicable technology for targeted genome editing.Nat Rev Mol Cell Biol 2013,14(
165、1),4955.DOI:10.1038/nrm3486.42.Kim,H.;Kim,J.S.A guide to genome engineering with programmable nucleases.Nat Rev Genet 2014,15(5),321334.DOI:10.1038/nrg3686.43.Chinese Academy of Sciences.CAS Institutes-Chinese Academy of Sciences.Chinese Academy of Sciences,2014.https:/ 2024-11-01).44.Kannan,R.;Vent
166、ura,A.The CRISPR revolution and its impact on cancer research.Swiss Med Wkly 2015,145,w14230.DOI:10.4414/smw.2015.14230.45.Kim,W.;Lee,S.;Kim,H.S.;Song,M.;Cha,Y.H.;Kim,Y.H.;Shin,J.;Lee,E.S.;Joo,Y.;Song,J.J.;et al.Targeting mutant KRAS with CRISPR/Cas9 controls tumor growth.Genome Res 2018,28(3),37438
167、2.DOI:10.1101/gr.223891.117.46.Koo,T.;Yoon,A.R.;Cho,H.Y.;Bae,S.;Yun,C.O.;Kim,J.S.Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression.Nucleic Acids Res 2017,45(13),78977908.DOI:10.1093/nar/gkx490.47.Cheung,A.H.;Chow,C.;Zhang,J.;Zhou,Y.;Huang,T.;Ng,K.C.
168、;Or,T.C.;Yao,Y.Y.;Dong,Y.;Fung,J.M.;et al.Specific targeting of point mutations in EGFR L858R-positive lung cancer by CRISPR/Cas9.Lab Invest 2018,98(7),968976.DOI:10.1038/s41374-018-0056-1.48.Levine,A.J.;Oren,M.The first 30 years of p53:growing ever more complex.Nat Rev Cancer 2009,9(10),749758.DOI:
169、10.1038/nrc2723.49.Vaddavalli,P.L.;Schumacher,B.The p53 network:cellular and systemic DNA damage responses in cancer and aging.Trends Genet 2022,38(6),598612.DOI:10.1016/j.tig.2022.02.010.50.Dittmer,D.;Pati,S.;Zambetti,G.;Chu,S.;Teresky,A.K.;Moore,M.;Finlay,C.;Levine,A.J.Gain of function mutations i
170、n p53.Nat Genet 1993,4(1),4246.DOI:10.1038/ng0593-42.51.Mirgayazova,R.;Khadiullina,R.;Chasov,V.;Mingaleeva,R.;Miftakhova,R.;Rizvanov,A.;Bulatov,E.Therapeutic Editing of the TP53 Gene:Is CRISPR/Cas9 an Option?Genes(Basel)2020,11(6).DOI:10.3390/genes11060704.52.Chen,X.;Zhang,T.;Su,W.;Dou,Z.;Zhao,D.;Ji
171、n,X.;Lei,H.;Wang,J.;Xie,X.;Cheng,B.;et al.Mutant p53 in cancer:from molecular mechanism to therapeutic modulation.Cell Death Dis 2022,13(11),974.DOI:10.1038/s41419-022-05408-1.53.Zhan,H.;Xie,H.;Zhou,Q.;Liu,Y.;Huang,W.Synthesizing a Genetic Sensor Based on CRISPR/Cas9 for Specifically Killing p53-Def
172、icient Cancer Cells.ACS Synth Biol 2018,7(7),17981807.DOI:10.1021/acssynbio.8b00202.54.Chira,S.;Gulei,D.;Hajitou,A.;Berindan-Neagoe,I.Restoring the p53 Guardian Phenotype in p53-Deficient Tumor Cells with CRISPR/Cas9.Trends Biotechnol 2018,36(7),653660.DOI:10.1016/j.tibtech.2018.01.014.55.Fadul,S.M.
173、;Arshad,A.;Mehmood,R.CRISPR-based epigenome editing:mechanisms and applications.Epigenomics 2023,15(21),11371155.DOI:10.2217/epi-2023-0281.56.Wang,H.;Guo,R.;Du,Z.;Bai,L.;Li,L.;Cui,J.;Li,W.;Hoffman,A.R.;Hu,J.F.Epigenetic Targeting of Granulin in Hepatoma Cells by Synthetic CRISPR dCas9 Epi-suppressor
174、s.Mol Ther Nucleic Acids 2018,11,2333.DOI:10.1016/j.omtn.2018.01.002.57.Zhou,S.;Hawley,J.R.;Soares,F.;Grillo,G.;Teng,M.;Madani Tonekaboni,S.A.;Hua,J.T.;Kron,K.J.;Mazrooei,P.;Ahmed,M.;et al.Noncoding mutations target cis-regulatory elements of the FOXA1 plexus in prostate cancer.Nat Commun 2020,11(1)
175、,441.DOI:10.1038/s41467-020-14318-9.58.Farhang,N.;Brunger,J.M.;Stover,J.D.;Thakore,P.I.;Lawrence,B.;Guilak,F.;Gersbach,C.A.;Setton,L.A.;Bowles,R.D.(*)CRISPR-Based Epigenome Editing of Cytokine Receptors for the Promotion of Cell Survival and Tissue Deposition in Inflammatory Environments.Tissue Eng
176、Part A 2017,23(1516),738749.DOI:10.1089/ten.TEA.2016.0441.CRISPR INSIGHT REPORT|27CRISPR INSIGHT REPORT|2759.Qin,W.;Xiong,Y.;Chen,J.;Huang,Y.;Liu,T.DC-CIK cells derived from ovarian cancer patient menstrual blood activate the TNFR1-ASK1-AIP1 pathway to kill autologous ovarian cancer stem cells.J Cel
177、l Mol Med 2018,22(7),33643376.DOI:10.1111/jcmm.13611.60.Zhang,Y.;Zhang,Z.The history and advances in cancer immunotherapy:understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications.Cell Mol Immunol 2020,17(8),807821.DOI:10.1038/s41423-020-0488-6.61.Zych,A
178、.O.;Bajor,M.;Zagozdzon,R.Application of Genome Editing Techniques in Immunology.Arch Immunol Ther Exp(Warsz)2018,66(4),289298.DOI:10.1007/s00005-018-0504-z.62.Torikai,H.;Cooper,L.J.Translational Implications for Off-the-shelf Immune Cells Expressing Chimeric Antigen Receptors.Molecular therapy:the j
179、ournal of the American Society of Gene Therapy 2016,24(7),11781186.DOI:10.1038/mt.2016.106.63.Liu,X.;Zhang,Y.;Cheng,C.;Cheng,A.W.;Zhang,X.;Li,N.;Xia,C.;Wei,X.;Liu,X.;Wang,H.CRISPR/Cas9-mediated multiplex gene editing in CAR-T cells.Cell Res 2017,27(1),154157.DOI:10.1038/cr.2016.142.64.Riolobos,L.;Hi
180、rata,R.K.;Turtle,C.J.;Wang,P.R.;Gornalusse,G.G.;Zavajlevski,M.;Riddell,S.R.;Russell,D.W.HLA engineering of human pluripotent stem cells.Molecular therapy:the journal of the American Society of Gene Therapy 2013,21(6),12321241.DOI:10.1038/mt.2013.59.65.Quintas-Cardama,A.;Kantarjian,H.M.;Cortes,J.E.Me
181、chanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia.Cancer Control 2009,16(2),122131.DOI:10.1177/107327480901600204.66.Yoon,A.R.;Lee,S.;Kim,J.H.;Park,Y.;Koo,T.;Yun,C.O.CRISPR-mediated ablation of TP53 and EGFR mutations enhances gefitinib sensitivity and anti-tumor e
182、fficacy in lung cancer.Molecular therapy:the journal of the American Society of Gene Therapy 2024,32(10),36183628.DOI:10.1016/j.ymthe.2024.07.017.67.Bahreini,A.;Li,Z.;Wang,P.;Levine,K.M.;Tasdemir,N.;Cao,L.;Weir,H.M.;Puhalla,S.L.;Davidson,N.E.;Stern,A.M.;et al.Mutation site and context dependent effe
183、cts of ESR1 mutation in genome-edited breast cancer cell models.Breast Cancer Res 2017,19(1),60.DOI:10.1186/s13058-017-0851-4.68.Harrod,A.;Fulton,J.;Nguyen,V.T.M.;Periyasamy,M.;Ramos-Garcia,L.;Lai,C.F.;Metodieva,G.;de Giorgio,A.;Williams,R.L.;Santos,D.B.;et al.Genomic modelling of the ESR1 Y537S mut
184、ation for evaluating function and new therapeutic approaches for metastatic breast cancer.Oncogene 2017,36(16),22862296.DOI:10.1038/onc.2016.382.69.Mao,C.;Livezey,M.;Kim,J.E.;Shapiro,D.J.Antiestrogen Resistant Cell Lines Expressing Estrogen Receptor alpha Mutations Upregulate the Unfolded Protein Re
185、sponse and are Killed by BHPI.Sci Rep 2016,6,34753.DOI:10.1038/srep34753.70.Chen,T.;Liu,C.;Lu,H.;Yin,M.;Shao,C.;Hu,X.;Wu,J.;Wang,Y.The expression of APE1 in triple-negative breast cancer and its effect on drug sensitivity of olaparib.Tumour Biol 2017,39(10),1010428317713390.DOI:10.1177/1010428317713
186、390.71.Avivar-Valderas,A.;McEwen,R.;Taheri-Ghahfarokhi,A.;Carnevalli,L.S.;Hardaker,E.L.;Maresca,M.;Hudson,K.;Harrington,E.A.;Cruzalegui,F.Functional significance of co-occurring mutations in PIK3CA and MAP3K1 in breast cancer.Oncotarget 2018,9(30),2144421458.DOI:10.18632/oncotarget.25118.72.Chen,C.J
187、.;Hsu,W.L.;Yang,H.I.;Lee,M.H.;Chen,H.C.;Chien,Y.C.;You,S.L.Epidemiology of virus infection and human cancer.Recent Results Cancer Res 2014,193,1132.DOI:10.1007/978-3-642-38965-8_2.73.Kennedy,E.M.;Kornepati,A.V.;Goldstein,M.;Bogerd,H.P.;Poling,B.C.;Whisnant,A.W.;Kastan,M.B.;Cullen,B.R.Inactivation of
188、 the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease.J Virol 2014,88(20),1196511972.DOI:10.1128/JVI.01879-14.74.Zhen,S.;Hua,L.;Takahashi,Y.;Narita,S.;Liu,Y.H.;Li,Y.In vitro and in vivo growth suppression of human papillomavirus 1
189、6-positive cervical cancer cells by CRISPR/Cas9.Biochem Biophys Res Commun 2014,450(4),14221426.DOI:10.1016/j.bbrc.2014.07.014.75.Yuen,K.S.;Chan,C.P.;Kok,K.H.;Jin,D.Y.Mutagenesis and Genome Engineering of Epstein-Barr Virus in Cultured Human Cells by CRISPR/Cas9.Methods Mol Biol 2017,1498,2331.DOI:1
190、0.1007/978-1-4939-6472-7_2.76.Wollebo,H.S.;Bellizzi,A.;Kaminski,R.;Hu,W.;White,M.K.;Khalili,K.CRISPR/Cas9 System as an Agent for Eliminating Polyomavirus JC Infection.PLoS One 2015,10(9),e0136046.DOI:10.1371/journal.pone.0136046.77.Chavez,M.;Chen,X.;Finn,P.B.;Qi,L.S.Advances in CRISPR therapeutics.N
191、at Rev Nephrol 2023,19(1),922.DOI:10.1038/s41581-022-00636-2.78.Li,H.;Yang,Y.;Hong,W.;Huang,M.;Wu,M.;Zhao,X.Applications of genome editing technology in the targeted therapy of human diseases:mechanisms,advances and prospects.Signal Transduct Target Ther 2020,5(1),1.DOI:10.1038/s41392-019-0089-y.79.
192、Dubey,A.K.;Kumar Gupta,V.;Kujawska,M.;Orive,G.;Kim,N.Y.;Li,C.Z.;Kumar Mishra,Y.;Kaushik,A.Exploring nano-enabled CRISPR/Cas-powered strategies for efficient diagnostics and treatment of infectious diseases.J Nanostructure Chem 2022,12(5),833864.DOI:10.1007/s40097-022-00472-7.80.Singh,A.;Irfan,H.;Fat
193、ima,E.;Nazir,Z.;Verma,A.;Akilimali,A.Revolutionary breakthrough:FDA approves CASGEVY,the first CRISPR/Cas9 gene therapy for sickle cell disease.Ann Med Surg(Lond)2024,86(8),45554559.DOI:10.1097/MS9.0000000000002146.81.Mohammadian Gol,T.;Urena-Bailen,G.;Hou,Y.;Sinn,R.;Antony,J.S.;Handgretinger,R.;Mez
194、ger,M.CRISPR medicine for blood disorders:Progress and challenges in delivery.Front Genome Ed 2022,4,1037290.DOI:10.3389/fgeed.2022.1037290.82.Ousterout,D.G.;Kabadi,A.M.;Thakore,P.I.;Majoros,W.H.;Reddy,T.E.;Gersbach,C.A.Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutation
195、s that cause Duchenne muscular dystrophy.Nat Commun 2015,6,6244.DOI:10.1038/ncomms7244.83.Kolli,N.;Lu,M.;Maiti,P.;Rossignol,J.;Dunbar,G.L.CRISPR/Cas9 Mediated Gene-Silencing of the Mutant Huntingtin Gene in an In Vitro Model of Huntingtons Disease.Int J Mol Sci 2017,18(4).DOI:10.3390/ijms18040754.84
196、.Shin,J.W.;Kim,K.H.;Chao,M.J.;Atwal,R.S.;Gillis,T.;MacDonald,M.E.;Gusella,J.F.;Lee,J.M.Permanent inactivation of Huntingtons disease mutation by personalized allele-specific CRISPR/Cas9.Hum Mol Genet 2016,25(20),45664576.DOI:10.1093/hmg/ddw286.85.Bertram,L.;Tanzi,R.E.The genetics of Alzheimers disea
197、se.Prog Mol Biol Transl Sci 2012,107,79100.DOI:10.1016/B978-0-12-385883-2.00008-4.86.Zhang,L.;Chen,C.;Mak,M.S.;Lu,J.;Wu,Z.;Chen,Q.;Han,Y.;Li,Y.;Pi,R.Advance of sporadic Alzheimers disease animal models.Med Res Rev 2020,40(1),431-458.DOI:10.1002/med.21624.87.Sun,L.;Zhou,R.;Yang,G.;Shi,Y.Analysis of 1
198、38 pathogenic mutations in presenilin-1 on the in vitro production of Abeta42 and Abeta40 peptides by gamma-secretase.Proc Natl Acad Sci U S A 2017,114(4),E476E485.DOI:10.1073/pnas.1618657114.88.Konstantinidis,E.;Molisak,A.;Perrin,F.;Streubel-Gallasch,L.;Fayad,S.;Kim,D.Y.;Petri,K.;Aryee,M.J.;Aguilar
199、,X.;Gyorgy,B.;et al.CRISPR/Cas9 treatment partially restores amyloid-beta 42/40 in human fibroblasts with the Alzheimers disease PSEN 1 M146L mutation.Mol Ther Nucleic Acids 2022,28,450461.DOI:10.1016/j.omtn.2022.03.022.89.Ortiz-Virumbrales,M.;Moreno,C.L.;Kruglikov,I.;Marazuela,P.;Sproul,A.;Jacob,S.
200、;Zimmer,M.;Paull,D.;Zhang,B.;Schadt,E.E.;et al.CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimers PSEN2(N141I)neurons.Acta Neuropathol Commun 2017,5(1),77.DOI:10.1186/s40478-017-0475-z.90.Cota-Coronado,J.A.;Sandoval-Avila,S.;Gaytan-Davila,Y.P.;
201、Diaz,N.F.;Vega-Ruiz,B.;Padilla-Camberos,E.;Diaz-Martinez,N.E.New transgenic models of Parkinsons disease using genome editing technology.Neurologia(Engl Ed)2020,35(7),486499.DOI:10.1016/j.nrl.2017.08.009.91.Nalls,M.A.;Blauwendraat,C.;Vallerga,C.L.;Heilbron,K.;Bandres-Ciga,S.;Chang,D.;Tan,M.;Kia,D.A.
202、;Noyce,A.J.;Xue,A.;et al.Identification of novel risk loci,causal insights,and heritable risk for Parkinsons disease:a meta-analysis of genome-wide association studies.Lancet Neurol 2019,18(12),10911102.DOI:10.1016/S1474-4422(19)30320-5.CRISPR INSIGHT REPORT|29CRISPR INSIGHT REPORT|2992.Chehelgerdi,
203、M.;Chehelgerdi,M.;Khorramian-Ghahfarokhi,M.;Shafieizadeh,M.;Mahmoudi,E.;Eskandari,F.;Rashidi,M.;Arshi,A.;Mokhtari-Farsani,A.Comprehensive review of CRISPR-based gene editing:mechanisms,challenges,and applications in cancer therapy.Mol Cancer 2024,23(1),9.DOI:10.1186/s12943-023-01925-5.93.Liu,W.;Li,L
204、.;Jiang,J.;Wu,M.;Lin,P.Applications and challenges of CRISPR/Cas gene-editing to disease treatment in clinics.Precis Clin Med 2021,4(3),179191.94.Uddin,F.;Rudin,C.M.;Sen,T.CRISPR Gene Therapy:Applications,Limitations,and Implications for the Future.Front Oncol 2020,10,1387.DOI:10.3389/fonc.2020.0138
205、7.95.Lino,C.A.;Harper,J.C.;Carney,J.P.;Timlin,J.A.Delivering CRISPR:a review of the challenges and approaches.Drug Delivery 2018,25(1),1234-1257.DOI:10.1080/10717544.2018.1474964.96.Bhattacharjee,R.;Jana,A.;Nandi,A.;Sinha,A.;Bhattacharjee,A.;Mitra,S.;Kar,S.;Dey,A.;Singh,S.K.;Varma,R.S.;et al.Synergy
206、 of nanocarriers with CRISPR/Cas9 in an emerging technology platform for biomedical appliances:Current insights and perspectives.Materials&Design 2022,224,111415.DOI:10.1016/j.matdes.2022.111415.97.Xu,X.;Liu,C.;Wang,Y.;Koivisto,O.;Zhou,J.;Shu,Y.;Zhang,H.Nanotechnology-based delivery of CRISPR/Cas9 f
207、or cancer treatment.Adv Drug Deliv Rev 2021,176,113891.DOI:10.1016/j.addr.2021.113891.98.Behr,M.;Zhou,J.;Xu,B.;Zhang,H.In vivo delivery of CRISPR/Cas9 therapeutics:Progress and challenges.Acta Pharm Sin B 2021,11(8),2150-2171.DOI:10.1016/j.apsb.2021.05.020.99.Chen,C.;Zhong,W.;Du,S.;Li,Y.;Zeng,Y.;Liu
208、,K.;Yang,J.;Guan,X.;Han,X.Intelligent nanotherapeutic strategies for the delivery of CRISPR system.Acta Pharmaceutica Sinica B 2023,13(6),25102543.DOI:10.1016/j.apsb.2022.12.013.100.FDA approves novel gene therapy to treat patients with a rare form of inherited vision loss.2017.https:/ 2024-11-01).1
209、01.Smalley,E.First AAV gene therapy poised for landmark approval.Nature Biotechnology 2017,35(11),998-999.DOI:10.1038/nbt1117-998.102.FDA Approves Gene Therapy for Inherited Blindness Developed by the University of Pennsylvania and Childrens Hospital of Philadelphia.2017.https:/ 2024-11-01).103.Cust
210、omizing CAR-T cells using the CRISPR/Cas9 system.https:/ 2024-11-01).104.Khoshandam,M.;Soltaninejad,H.;Hamidieh,A.A.;Hosseinkhani,S.CRISPR,CAR-T,and NK:Current applications and future perspectives.Genes Dis 2024,11(4),101121.DOI:10.1016/j.gendis.2023.101121.105.Chen,G.;Wei,T.;Yang,H.;Li,G.;Li,H.CRIS
211、PR-Based Therapeutic Gene Editing for Duchenne Muscular Dystrophy:Advances,Challenges and Perspectives.Cells 2022,11(19).DOI:10.3390/cells11192964.106.Chemello,F.;Olson,E.N.;Bassel-Duby,R.CRISPR-Editing Therapy for Duchenne Muscular Dystrophy.Hum Gene Ther 2023,34(910),379387.DOI:10.1089/hum.2023.05
212、3.107.Agrawal,P.;Harish,V.;Mohd,S.;Singh,S.K.;Tewari,D.;Tatiparthi,R.;Harshita;Vishwas,S.;Sutrapu,S.;Dua,K.;Gulati,M.Role of CRISPR/Cas9 in the treatment of Duchenne muscular dystrophy and its delivery strategies.Life Sciences 2023,330,122003.DOI:10.1016/j.lfs.2023.122003.108.Laurent,M.;Geoffroy,M.;
213、Pavani,G.;Guiraud,S.CRISPR-Based Gene Therapies:From Preclinical to Clinical Treatments.Cells 2024,13(10),800.DOI:10.3390/cells13100800.109.Al Fayez,N.;Nassar,M.S.;Alshehri,A.A.;Alnefaie,M.K.;Almughem,F.A.;Alshehri,B.Y.;Alawad,A.O.;Tawfik,E.A.Recent Advancement in mRNA Vaccine Development and Applic
214、ations.Pharmaceutics 2023,15(7).DOI:10.3390/pharmaceutics15071972.110.Kowalski,P.S.;Rudra,A.;Miao,L.;Anderson,D.G.Delivering the Messenger:Advances in Technologies for Therapeutic mRNA Delivery.Molecular therapy:the journal of the American Society of Gene Therapy 2019,27(4),710-728.DOI:10.1016/j.ymt
215、he.2019.02.012.111.Parhiz,H.;Atochina-Vasserman,E.N.;Weissman,D.mRNA-based therapeutics:looking beyond COVID-19 vaccines.The Lancet 2024,403(10432),1192-1204.DOI:10.1016/S0140-6736(23)02444-3.112.Ryu,N.;Kim,M.-A.;Park,D.;Lee,B.;Kim,Y.-R.;Kim,K.-H.;Baek,J.-I.;Kim,W.J.;Lee,K.-Y.;Kim,U.-K.Effective PEI
216、-mediated delivery of CRISPR/Cas9 complex for targeted gene therapy.Nanomedicine:Nanotechnology,Biology and Medicine 2018,14(7),2095-2102.DOI:10.1016/j.nano.2018.06.009.113.Cai,X.;Dou,R.;Guo,C.;Tang,J.;Li,X.;Chen,J.;Zhang,J.Cationic Polymers as Transfection Reagents for Nucleic Acid Delivery.Pharmac
217、eutics 2023,15(5).DOI:10.3390/pharmaceutics15051502.114.Xiu,K.;Saunders,L.;Wen,L.;Ruan,J.;Dong,R.;Song,J.;Yang,D.;Zhang,J.;Xu,J.;Chen,Y.E.;Ma,P.X.Delivery of CRISPR/Cas9 Plasmid DNA by Hyperbranched Polymeric Nanoparticles Enables Efficient Gene Editing.Cells 2023,12(1),156.DOI:10.3390/cells12010156
218、.115.Kanu,G.A.;Parambath,J.B.M.;Abu Odeh,R.O.;Mohamed,A.A.Gold Nanoparticle-Mediated Gene Therapy.Cancers(Basel)2022,14(21).DOI:10.3390/cancers14215366.116.Ferreira,D.;Fontinha,D.;Martins,C.;Pires,D.;Fernandes,A.R.;Baptista,P.V.Gold Nanoparticles for Vectorization of Nucleic Acids for Cancer Therape
219、utics.Molecules 2020,25(15).DOI:10.3390/molecules25153489.117.Padayachee,J.;Singh,M.Therapeutic applications of CRISPR/Cas9 in breast cancer and delivery potential of gold nanomaterials.Nanobiomedicine 2020,7,1849543520983196.DOI:10.1177/1849543520983196.118.Foss,D.V.;Muldoon,J.J.;Nguyen,D.N.;Carr,D
220、.;Sahu,S.U.;Hunsinger,J.M.;Wyman,S.K.;Krishnappa,N.;Mendonsa,R.;Schanzer,E.V.;et al.Peptide-mediated delivery of CRISPR enzymes for the efficient editing of primary human lymphocytes.Nature Biomedical Engineering 2023,7(5),647660.DOI:10.1038/s41551-023-01032-2.119.Gustafsson,O.;Rdler,J.;Roudi,S.;Leh
221、to,T.;Hllbrink,M.;Lehto,T.;Gupta,D.;Andaloussi,S.E.;Nordin,J.Z.Efficient Peptide-Mediated In Vitro Delivery of Cas9 RNP.Pharmaceutics 2021,13(6).DOI:10.3390/pharmaceutics13060878.120.Vergara-Mendoza,M.;Gomez-Quiroz,L.E.;Miranda-Labra,R.U.;Fuentes-Romero,L.L.;Romero-Rodrguez,D.P.;Gonzlez-Ruiz,J.;Hern
222、ndez-Rizo,S.;Viveros-Rogel,M.Regulation of Cas9 by viral proteins Tat and Rev for HIV-1 inactivation.Antiviral Research 2020,180,104856.DOI:10.1016/j.antiviral.2020.104856.121.Rezalotfi,A.;Fritz,L.;Frster,R.;Bonjak,B.Challenges of CRISPR-Based Gene Editing in Primary T Cells.Int J Mol Sci 2022,23(3)
223、.DOI:10.3390/ijms23031689.122.Atsavapranee,E.S.;Billingsley,M.M.;Mitchell,M.J.Delivery technologies for T cell gene editing:Applications in cancer immunotherapy.EBioMedicine 2021,67,103354.DOI:10.1016/j.ebiom.2021.103354.123.Park,H.;Kang,Y.K.;Shim,G.CRISPR/Cas9-Mediated Customizing Strategies for Ad
224、optive T-Cell Therapy.Pharmaceutics 2024,16(3),346.DOI:10.3390/pharmaceutics16030346.124.Harms,D.W.;Quadros,R.M.;Seruggia,D.;Ohtsuka,M.;Takahashi,G.;Montoliu,L.;Gurumurthy,C.B.Mouse Genome Editing Using the CRISPR/Cas System.Curr Protoc Hum Genet 2014,83,15.17.11-27.DOI:10.1002/0471142905.hg1507s83.
225、125.Sakurai,T.;Kamiyoshi,A.;Kawate,H.;Watanabe,S.;Sato,M.;Shindo,T.Production of genetically engineered mice with higher efficiency,lower mosaicism,and multiplexing capability using maternally expressed Cas9.Scientific Reports 2020,10(1),1091.DOI:10.1038/s41598-020-57996-7.126.Jin,L.F.;Li,J.S.Genera
226、tion of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems.Dongwuxue Yanjiu 2016,37(4),205213.DOI:10.13918/j.issn.2095-8137.2016.4.205.127.Xue,W.;Chen,S.;Yin,H.;Tammela,T.;Papagiannakopoulos,T.;Joshi,N.S.;Cai,W.;Yang,G.;Bronson,R.;Crowley,D.G.;et al.CRISPR-mediated d
227、irect mutation of cancer genes in the mouse liver.Nature 2014,514(7522),380-384.DOI:10.1038/nature13589.128.Alves-Bezerra,M.;Furey,N.;Johnson,C.G.;Bissig,K.D.Using CRISPR/Cas9 to model human liver disease.JHEP Rep 2019,1(5),392402.DOI:10.1016/j.jhepr.2019.09.002.129.Son,S.;Park,S.R.Challenges Facing
228、 CRISPR/Cas9-Based Genome Editing in Plants.Front Plant Sci 2022,13,902413.DOI:10.3389/fpls.2022.902413.CRISPR INSIGHT REPORT|31CRISPR INSIGHT REPORT|31130.Hamada,H.;Liu,Y.;Nagira,Y.;Miki,R.;Taoka,N.;Imai,R.Biolistic-delivery-based transient CRISPR/Cas9 expression enables in planta genome editing in
229、 wheat.Sci Rep 2018,8(1),14422.DOI:10.1038/s41598-018-32714-6.131.Miller,K.;Eggenberger,A.L.;Lee,K.;Liu,F.;Kang,M.;Drent,M.;Ruba,A.;Kirscht,T.;Wang,K.;Jiang,S.An improved biolistic delivery and analysis method for evaluation of DNA and CRISPR/Cas delivery efficacy in plant tissue.Scientific Reports
230、2021,11(1),7695.DOI:10.1038/s41598-021-86549-9.132.Taha,E.A.;Lee,J.;Hotta,A.Delivery of CRISPR/Cas tools for in vivo genome editing therapy:Trends and challenges.Journal of Controlled Release 2022,342,345-361.DOI:10.1016/j.jconrel.2022.01.013.133.Fajrial,A.K.;He,Q.Q.;Wirusanti,N.I.;Slansky,J.E.;Ding
231、,X.A review of emerging physical transfection methods for CRISPR/Cas9-mediated gene editing.Theranostics 2020,10(12),55325549.DOI:10.7150/thno.43465.134.Sahel,D.K.;Vora,L.K.;Saraswat,A.;Sharma,S.;Monpara,J.;DSouza,A.A.;Mishra,D.;Tryphena,K.P.;Kawakita,S.;Khan,S.;et al.CRISPR/Cas9 Genome Editing for
232、Tissue-Specific In Vivo Targeting:Nanomaterials and Translational Perspective.Advanced Science 2023,10(19),2207512.DOI:10.1002/advs.202207512.135.Shi,H.;Smits,J.P.H.;van den Bogaard,E.H.;Brewer,M.G.Research Techniques Made Simple:Delivery of the CRISPR/Cas9 Components into Epidermal Cells.J Invest D
233、ermatol 2021,141(6),13751381.e1371.DOI:10.1016/j.jid.2021.01.008.136.Du,Y.;Liu,Y.;Hu,J.;Peng,X.;Liu,Z.CRISPR/Cas9 systems:Delivery technologies and biomedical applications.Asian J Pharm Sci 2023,18(6),100854.DOI:10.1016/j.ajps.2023.100854.137.Foley,R.A.;Sims,R.A.;Duggan,E.C.;Olmedo,J.K.;Ma,R.;Jonas,
234、S.J.Delivering the CRISPR/Cas9 system for engineering gene therapies:Recent cargo and delivery approaches for clinical translation.Frontiers in Bioengineering and Biotechnology 2022,10,Review.DOI:10.3389/fbioe.2022.973326.138.Jolany Vangah,S.;Katalani,C.;Booneh,H.A.;Hajizade,A.;Sijercic,A.;Ahmadian,
235、G.CRISPR-Based Diagnosis of Infectious and Noninfectious Diseases.Biol Proced Online 2020,22,22.DOI:10.1186/s12575-020-00135-3.139.Vangah,S.J.;Katalani,C.;Boone,H.A.;Hajizade,A.;Sijercic,A.;Ahmadian,G.Correction to:CRISPR-Based Diagnosis of Infectious and Noninfectious Diseases.Biol Proced Online 20
236、20,22(1),24.DOI:10.1186/s12575-020-00136-2.140.Wang,Z.,Liu,Y.,Zhou,F.,Wang,Y.,Zhou,X.The application of CRISPR/Cas in disease diagnosis and treatment.Science China Chemistry 2023,66,27342742.DOI:10.1007/s11426-023-1765-0.141.Yang,S.;Rothman,R.E.PCR-based diagnostics for infectious diseases:uses,limi
237、tations,and future applications in acute-care settings.Lancet Infect Dis 2004,4(6),337348.DOI:10.1016/S1473-3099(04)01044-8.142.Mahony,J.B.;Blackhouse,G.;Babwah,J.;Smieja,M.;Buracond,S.;Chong,S.;Ciccotelli,W.;OShea,T.;Alnakhli,D.;Griffiths-Turner,M.;Goeree,R.Cost analysis of multiplex PCR testing fo
238、r diagnosing respiratory virus infections.J Clin Microbiol 2009,47(9),28122817.DOI:10.1128/JCM.00556-09.143.Scheler,O.;Glynn,B.;Kurg,A.Nucleic acid detection technologies and marker molecules in bacterial diagnostics.Expert Rev Mol Diagn 2014,14(4),489500.DOI:10.1586/14737159.2014.908710.144.Matthij
239、s,G.;Souche,E.;Alders,M.;Corveleyn,A.;Eck,S.;Feenstra,I.;Race,V.;Sistermans,E.;Sturm,M.;Weiss,M.;et al.Guidelines for diagnostic next-generation sequencing.Eur J Hum Genet 2016,24(10),1515.DOI:10.1038/ejhg.2016.63.145.Mamanova,L.;Coffey,A.J.;Scott,C.E.;Kozarewa,I.;Turner,E.H.;Kumar,A.;Howard,E.;Shen
240、dure,J.;Turner,D.J.Target-enrichment strategies for next-generation sequencing.Nat Methods 2010,7(2),111118.DOI:10.1038/nmeth.1419.146.King,R.L.;McPhail,E.D.;Meyer,R.G.;Vasmatzis,G.;Pearce,K.;Smadbeck,J.B.;Ketterling,R.P.;Smoley,S.A.;Greipp,P.T.;Hoppman,N.L.;et al.False-negative rates for MYC fluore
241、scence in situ hybridization probes in B-cell neoplasms.Haematologica 2019,104(6),e248e251.DOI:10.3324/haematol.2018.207290.147.Wang,D.G.;Brewster,J.D.;Paul,M.;Tomasula,P.M.Two methods for increased specificity and sensitivity in loop-mediated isothermal amplification.Molecules 2015,20(4),60486059.D
242、OI:10.3390/molecules20046048.148.Mabey,D.;Peeling,R.W.;Ustianowski,A.;Perkins,M.D.Diagnostics for the developing world.Nat Rev Microbiol 2004,2(3),231-240.DOI:10.1038/nrmicro841.149.Dara,M;Dianatpour,M;Azarpira,N;Omidifar,N.Human Gene 2024,41(201297).https:/doi.org/10.1016/j.humgen.2024.201297.150.X
243、ue,L.;Tang,B.;Chen,W.;Luo,J.Prediction of CRISPR sgRNA Activity Using a Deep Convolutional Neural Network.J Chem Inf Model 2019,59(1),615624.DOI:10.1021/acs.jcim.8b00368.151.Ruffolo,J.A.,Nayfach,S.,Gallagher,J.,Bhatnagar,A.,Beazer,J.,Hussain,R.,Russ,J.,Yip,J.,Hill,E.,Pacesa,M.,Meeske,A.J.,Cameron,P.
244、,Madani,A.Preprint Design of highly functional genome editors by modeling the universe of CRISPR/Cas sequences.bioRxiv 2024.152.Wessels,H.H.;Stirn,A.;Mendez-Mancilla,A.;Kim,E.J.;Hart,S.K.;Knowles,D.A.;Sanjana,N.E.Prediction of on-target and off-target activity of CRISPR/Cas13d guide RNAs using deep
245、learning.Nat Biotechnol 2024,42(4),628637.DOI:10.1038/s41587-023-01830-8.153.Nguyen,E.,Poli,M.,Durrant,M.G.,Thomas,A.W.,Kang,B.,Sullivan,J.,Ng,M.Y.,Lewis,A.,Patel,A.,Lou,A.,Ermon,S.,Baccus,S.A.,Hernandez-Boussard,T.,R,C.Hsu,P.D.,Hie,B.L.Preprint Sequence modeling and design from molecular to genome
246、scale with Evo.bioRxiv 2024.154.CRISPick.https:/portals.broadinstitute.org/gppx/crispick/public(accessed 2024-11-01).155.Doench,J.G.;Fusi,N.;Sullender,M.;Hegde,M.;Vaimberg,E.W.;Donovan,K.F.;Smith,I.;Tothova,Z.;Wilen,C.;Orchard,R.;et al.Optimized sgRNA design to maximize activity and minimize off-tar
247、get effects of CRISPR/Cas9.Nat Biotechnol 2016,34(2),184191.DOI:10.1038/nbt.3437.156.Sanson,K.R.;Hanna,R.E.;Hegde,M.;Donovan,K.F.;Strand,C.;Sullender,M.E.;Vaimberg,E.W.;Goodale,A.;Root,D.E.;Piccioni,F.;Doench,J.G.Optimized libraries for CRISPR/Cas9 genetic screens with multiple modalities.Nat Commun
248、 2018,9(1),5416.DOI:10.1038/s41467-018-07901-8.157.sgRNA Scorer.https:/frederick.cancer.gov/resources/repositories/sgrnascorer(accessed 2024-11-01).158.Chari,R.;Yeo,N.C.;Chavez,A.;Church,G.M.sgRNA Scorer 2.0:A Species-Independent Model To Predict CRISPR/Cas9 Activity.ACS Synth Biol 2017,6(5),902-904
249、.DOI:10.1021/acssynbio.6b00343.159.Welcome to SSC-Sequence Scan for CRISPR.http:/crispr.dfci.harvard.edu/SSC/(accessed 2024-11-01).160.Xu,H.;Xiao,T.;Chen,C.H.;Li,W.;Meyer,C.A.;Wu,Q.;Wu,D.;Cong,L.;Zhang,F.;Liu,J.S.;et al.Sequence determinants of improved CRISPR sgRNA design.Genome Res 2015,25(8),1147
250、1157.DOI:10.1101/gr.191452.115.161.DeepCRISPR.http:/ 2024-11-01).162.Chuai,G.;Ma,H.;Yan,J.;Chen,M.;Hong,N.;Xue,D.;Zhou,C.;Zhu,C.;Chen,K.;Duan,B.;et al.DeepCRISPR:optimized CRISPR guide RNA design by deep learning.Genome Biol 2018,19(1),80.DOI:10.1186/s13059-018-1459-4.163.Abadi,S.;Yan,W.X.;Amar,D.;M
251、ayrose,I.A machine learning approach for predicting CRISPR/Cas9 cleavage efficiencies and patterns underlying its mechanism of action.PLoS Comput Biol 2017,13(10),e1005807.DOI:10.1371/journal.pcbi.1005807.164.Prykhozhij,S.V.;Rajan,V.;Gaston,D.;Berman,J.N.CRISPR multitargeter:a web tool to find commo
252、n and unique CRISPR single guide RNA targets in a set of similar sequences.PLoS One 2015,10(3),e0119372.DOI:10.1371/journal.pone.0119372.165.Prykhozhij,S.V.;Rajan,V.;Gaston,D.;Berman,J.N.Correction:CRISPR MultiTargeter:A Web Tool to Find Common and Unique CRISPR Single Guide RNA Targets in a Set of
253、Similar Sequences.PLoS One 2015,10(9),e0138634.DOI:10.1371/journal.pone.0138634.166.DeepHF.http:/ 2024-11-01).167.Wang,D.;Zhang,C.;Wang,B.;Li,B.;Wang,Q.;Liu,D.;Wang,H.;Zhou,Y.;Shi,L.;Lan,F.;Wang,Y.Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning.Nat Commun 2019,
254、10(1),4284.DOI:10.1038/s41467-019-12281-8.168.Zheng,X.,Cui,J.,Wang,Y.,Zhang,J.,Wang,C.Preprint CRSIPR-A-I:a webtool for the efficacy prediction of CRISPR activation and interference.bioRxiv 2021.CRISPR INSIGHT REPORT|33CRISPR INSIGHT REPORT|33169.CRISPR-P 2.0:an improved CRISPR/Cas9 tool for genome
255、editing in plants.http:/ 2024-11-01).170.Lei,Y.;Lu,L.;Liu,H.Y.;Li,S.;Xing,F.;Chen,L.L.CRISPR-P:a web tool for synthetic single-guide RNA design of CRISPR-system in plants.Mol Plant 2014,7(9),14941496.DOI:10.1093/mp/ssu044.171.Ham,B.Jennifer Doudna Answers Questions on CRISPR,Gene Editings Future.Ame
256、rican Association for the Advancement of Science,2016.https:/www.aaas.org/news/jennifer-doudna-answers-questions-crispr-gene-editings-future(accessed 2024-11-01).172.Raposo,V.L.The First Chinese Edited Babies:A Leap of Faith in Science.JBRA Assist Reprod 2019,23(3),197-199.DOI:10.5935/1518-0557.2019
257、0042.173.Marchione,M.Chinese researcher claims first gene-edited babies.The Associated Press,2018.https:/ 2024-11-01).174.Beauchamp,T.L.;Childress,J.F.Principles of biomedical ethics;Oxford University Press,2019.175.Gonzalez-Avila,L.U.;Vega-Lpez,J.M.;Pelcastre-Rodrguez,L.I.;Cabrero-Martnez,O.A.;Hern
258、ndez-Cortez,C.;Castro-Escarpulli,G.The Challenge of CRISPR/Cas Toward Bioethics.Frontiers in Microbiology 2021,12,Mini Review.DOI:10.3389/fmicb.2021.657981.176.Zhang,X.H.;Tee,L.Y.;Wang,X.G.;Huang,Q.S.;Yang,S.H.Off-target Effects in CRISPR/Cas9-mediated Genome Engineering.Mol Ther Nucleic Acids 2015,
259、4(11),e264.DOI:10.1038/mtna.2015.37.177.Pattanayak,V.;Lin,S.;Guilinger,J.P.;Ma,E.;Doudna,J.A.;Liu,D.R.High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity.Nat Biotechnol 2013,31(9),839843.DOI:10.1038/nbt.2673.178.Pacesa,M.;Lin,C.H.;Clery,A.;Saha,A.;Ar
260、antes,P.R.;Bargsten,K.;Irby,M.J.;Allain,F.H.;Palermo,G.;Cameron,P.;et al.Structural basis for Cas9 off-target activity.Cell 2022,185(22),40674081 e4021.DOI:10.1016/j.cell.2022.09.026.179.Kuscu,C.;Arslan,S.;Singh,R.;Thorpe,J.;Adli,M.Genome-wide analysis reveals characteristics of off-target sites bou
261、nd by the Cas9 endonuclease.Nat Biotechnol 2014,32(7),677683.DOI:10.1038/nbt.2916.180.OGeen,H.;Henry,I.M.;Bhakta,M.S.;Meckler,J.F.;Segal,D.J.A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture.Nucleic Acids Res 2015,43(6),3389-3404.DOI:10.1093/nar/gkv137.1
262、81.Jones,S.K.,Jr.;Hawkins,J.A.;Johnson,N.V.;Jung,C.;Hu,K.;Rybarski,J.R.;Chen,J.S.;Doudna,J.A.;Press,W.H.;Finkelstein,I.J.Massively parallel kinetic profiling of natural and engineered CRISPR nucleases.Nat Biotechnol 2021,39(1),8493.DOI:10.1038/s41587-020-0646-5.182.Cameron,P.;Fuller,C.K.;Donohoue,P.
263、D.;Jones,B.N.;Thompson,M.S.;Carter,M.M.;Gradia,S.;Vidal,B.;Garner,E.;Slorach,E.M.;et al.Mapping the genomic landscape of CRISPR/Cas9 cleavage.Nat Methods 2017,14(6),600606.DOI:10.1038/nmeth.4284.183.Newton,M.D.;Taylor,B.J.;Driessen,R.P.C.;Roos,L.;Cvetesic,N.;Allyjaun,S.;Lenhard,B.;Cuomo,M.E.;Rueda,D
264、.S.DNA stretching induces Cas9 off-target activity.Nat Struct Mol Biol 2019,26(3),185192.DOI:10.1038/s41594-019-0188-z.184.Wang,J.;Lin,J.;Chen,Y.;Liu,J.;Zheng,Q.;Deng,M.;Wang,R.;Zhang,Y.;Feng,S.;Xu,Z.;et al.An ultra-compact promoter drives widespread neuronal expression in mouse and monkey brains.Ce
265、ll Rep 2023,42(11),113348.DOI:10.1016/j.celrep.2023.113348.185.Wang,D.;Zhang,F.;Gao,G.CRISPR-Based Therapeutic Genome Editing:Strategies and In Vivo Delivery by AAV Vectors.Cell 2020,181(1),136150.DOI:10.1016/j.cell.2020.03.023.186.Komarova,Y.;Malik,A.B.Regulation of endothelial permeability via par
266、acellular and transcellular transport pathways.Annu Rev Physiol 2010,72,463493.DOI:10.1146/annurev-physiol-021909-135833.187.Hu,Z.;Yu,L.;Zhu,D.;Ding,W.;Wang,X.;Zhang,C.;Wang,L.;Jiang,X.;Shen,H.;He,D.;et al.Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 p
267、ositive human cervical cancer cells.Biomed Res Int 2014,2014,612823.DOI:10.1155/2014/612823.188.Kosicki,M.;Tomberg,K.;Bradley,A.Repair of double-strand breaks induced by CRISPR/Cas9 leads to large deletions and complex rearrangements.Nat Biotechnol 2018,36(8),765771.DOI:10.1038/nbt.4192.189.Haapanie
268、mi,E.;Botla,S.;Persson,J.;Schmierer,B.;Taipale,J.CRISPR/Cas9 genome editing induces a p53-mediated DNA damage response.Nat Med 2018,24(7),927930.DOI:10.1038/s41591-018-0049-z.190.Tsuchida,C.A.;Brandes,N.;Bueno,R.;Trinidad,M.;Mazumder,T.;Yu,B.;Hwang,B.;Chang,C.;Liu,J.;Sun,Y.;et al.Mitigation of chrom
269、osome loss in clinical CRISPR/Cas9-engineered T cells.Cell 2023,186(21),4567-4582 e4520.DOI:10.1016/j.cell.2023.08.041.191.Charlesworth,C.T.;Deshpande,P.S.;Dever,D.P.;Camarena,J.;Lemgart,V.T.;Cromer,M.K.;Vakulskas,C.A.;Collingwood,M.A.;Zhang,L.;Bode,N.M.;et al.Identification of preexisting adaptive
270、immunity to Cas9 proteins in humans.Nat Med 2019,25(2),249-254.DOI:10.1038/s41591-018-0326-x.192.Wagner,D.L.;Amini,L.;Wendering,D.J.;Burkhardt,L.M.;Akyuz,L.;Reinke,P.;Volk,H.D.;Schmueck-Henneresse,M.High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population.Nat
271、 Med 2019,25(2),242248.DOI:10.1038/s41591-018-0204-6.193.Hakim,C.H.;Kumar,S.R.P.;Perez-Lopez,D.O.;Wasala,N.B.;Zhang,D.;Yue,Y.;Teixeira,J.;Pan,X.;Zhang,K.;Million,E.D.;et al.Cas9-specific immune responses compromise local and systemic AAV CRISPR therapy in multiple dystrophic canine models.Nat Commun
272、 2021,12(1),6769.DOI:10.1038/s41467-021-26830-7.194.Ferdosi,S.R.;Ewaisha,R.;Moghadam,F.;Krishna,S.;Park,J.G.;Ebrahimkhani,M.R.;Kiani,S.;Anderson,K.S.Multifunctional CRISPR/Cas9 with engineered immunosilenced human T cell epitopes.Nat Commun 2019,10(1),1842.DOI:10.1038/s41467-019-09693-x.195.Platt,R.
273、J.;Chen,S.;Zhou,Y.;Yim,M.J.;Swiech,L.;Kempton,H.R.;Dahlman,J.E.;Parnas,O.;Eisenhaure,T.M.;Jovanovic,M.;et al.CRISPR-Cas9 knockin mice for genome editing and cancer modeling.Cell 2014,159(2),440-455.DOI:10.1016/j.cell.2014.09.014 196.Dow,L.E.;Fisher,J.;ORourke,K.P.;Muley,A.;Kastenhuber,E.R.;Livshits,
274、G.;Tschaharganeh,D.F.;Socci,N.D.;Lowe,S.W.Inducible in vivo genome editing with CRISPR-Cas9.Nat Biotechnol 2015,33(4),390-394.DOI:10.1038/nbt.3155 197.Sanchez-Rivera,F.J.;Papagiannakopoulos,T.;Romero,R.;Tammela,T.;Bauer,M.R.;Bhutkar,A.;Joshi,N.S.;Subbaraj,L.;Bronson,R.T.;Xue,W.;Jacks,T.Rapid modelli
275、ng of cooperating genetic events in cancer through somatic genome editing.Nature 2014,516(7531),428-431.DOI:10.1038/nature13906 198.Chen,S.;Sanjana,N.E.;Zheng,K.;Shalem,O.;Lee,K.;Shi,X.;Scott,D.A.;Song,J.;Pan,J.Q.;Weissleder,R.;et al.Genome-wide CRISPR screen in a mouse model of tumor growth and met
276、astasis.Cell 2015,160(6),1246-1260.DOI:10.1016/j.cell.2015.02.038 199.Shalem,O.;Sanjana,N.E.;Hartenian,E.;Shi,X.;Scott,D.A.;Mikkelson,T.;Heckl,D.;Ebert,B.L.;Root,D.E.;Doench,J.G.;Zhang,F.Genome-scale CRISPR-Cas9 knockout screening in human cells.Science 2014,343(6166),84-87.DOI:10.1126/science.12470
277、05 200.Dong,M.B.;Wang,G.;Chow,R.D.;Ye,L.;Zhu,L.;Dai,X.;Park,J.J.;Kim,H.R.;Errami,Y.;Guzman,C.D.;et al.Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells.Cell 2019,178(5),1189-1204 e1123.DOI:10.1016/j.cell.2019.07.044CRISPR INSIGHT REPORT|35For more det
278、ails on CRISPR,see our publication at link.cas.org/crispr-updateCRISPR INSIGHT REPORT|35 2025 American Chemical Society.All rights reserved.INSGENENGREP102348250215CAS connects the worlds scientific knowledge to accelerate breakthroughs that improve lives.We empower global innovators to efficiently
279、navigate todays complex data landscape and make confident decisions in each phase of the innovation journey.As a specialist in scientific knowledge management,our team builds the largest authoritative collection of human-curated scientific data in the world and provides essential information solutio
280、ns,services,and expertise.Scientists,patent professionals,and business leaders across industries rely on CAS to help them uncover opportunities,mitigate risks,and unlock shared knowledge so they can get from inspiration to innovation faster.CAS is a division of the American Chemical Society.Connect with us at cas.org