1、SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing1 of 98Fundamentals of Transceivers for Communication and SensingGiuseppe Gramegna()imec,Leuven-BelgiumFebruary 18th-2024SpeakerVideo 2024 IEEE Internati
2、onal Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing2 of 98Motivation and scope of the tutorial Communication and Radar often treated separately,share similar challenges and circuits Tutorial will provide a unified overview for Communica
3、tion and Radar systems a few implementations with key circuitsSpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing3 of 98AGENDA Wireless communication basics Radar basics High level view of typical Radar a
4、nd Communication architectures Integrated Implementation,challenges,key building blocks Beamforming architectures and MIMO(focus on Radar for MIMO)with key building blocks implementations Wireless Communications and Radar side by side ConclusionsSpeakerVideo 2024 IEEE International Solid-State Circu
5、its ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing4 of 98AGENDA Wireless communication basics RX Link Budget,data rate Modulation,Range,SNR,Sensitivity Radar basics High level view of a few Radar and Communication implementation Integrated Implementation,ch
6、allenges,key building blocks Beamforming architectures and MIMO(focus on Radar for MIMO)with key building blocks implementations Wireless Communications and Radar side by side ConclusionsSpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transcei
7、vers for Communication and Sensing5 of 98Received power Signal(dBm)d-distance For User Equipment(UE),is limited by space allocated for Antenna=4212=42d-distance or range-wave-length frequency speed of light,-TX and RX Power=42-TX Antenna Gain and Aperture=42-RX Antenna Gain and Aperture2ndpower of d
8、 SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing6 of 98Data Rate data rate =S Symbol Rate(/s)-Bandwidth(Hz)-Coding rate 1 Number of bits per symbolExample-(1Msymbol/sec x 1 x 4bits/symbol=4Mbps)(QAM=Q
9、uadrature-Amplitude-Modulation)To increase data rate -increase bits per symbol(n)higher modulation schemes-Increase (motivates the race to higher frequencies)16QAMSpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication a
10、nd Sensing7 of 98Single-carrier(SC)modulation schemesSNR=Signal-to-Noise Ratio RX sideEVM=Error Vector Magnitude TX sidePAPR=Peak-to-Average Power RatioModulationQPSK16 QAM64 QAMBits per symbol246SNR(dB)101825PAPR(dB)037QPSK=Quadrature-Phase=Shift-KeyingQAM=Quadrature Amplitude ModulationSpeakerVide
11、o 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing8 of 98OFDM(Orthogonal Frequency Division Multiplexing)=()WHY?H(s)Channel+Radio impairments easier to compensate into smaller frequency sub-bandsSignal mapped into
12、multiple subcarriersHOW?H(s)Channel and Radio impairments are equalized using a known signal(TX Preamble)Signal retrieved after channel is estimated()=/1 2 symbol=1SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication
13、and Sensing9 of 98Receiver(RX)Signal-to-Noise-Ratio(SNR)=42=SNR(dB)d=1.381023/T=290-Noise Factor-Noise Figure-BandwidthRX HW LimitedTX HW LimitedSizeSpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing10 o
14、f 98Max range to keep link=42=4 SNR(dB)dIf the signal can be demodulated SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing11 of 98AGENDA Wireless communication basics Radar basics Resolution,Accuracy,An
15、gle Resolution FMCW,PMCW,OFDM Radar High level view of a few Radar and Communication implementation Integrated Implementation,challenges,key building blocks Beamforming architectures and MIMO(focus on Radar for MIMO)with key building blocks implementations Wireless Communications and Radar compariso
16、n and requirements ConclusionsSpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing12 of 98RADAR Introduction TARGET TX transmits a signal that bounces off a target(cstarget cross-section)and is received by
17、 RX section Distance(range)estimated by timing information and speed of light =2 Multiple measurements to retrieve:Range(distance),velocity,AOA(Angle of Arrival)cstarget cross-section:depends on material,size,shape,angle of incidence,frequencySpeakerVideo 2024 IEEE International Solid-State Circuits
18、 ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing13 of 98Resolution =/2 Resolution=ability to differentiate(resolve)between different targetsExample:Pulsed RadarEasily Resolved:Spacing /2Resolved:=/2NOT resolved:Spacing 2 cos =2SpeakerVideo 2024 IEEE Internat
19、ional Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing15 of 98Received Power TARGET=4242=24314Using=24=4342d-distance or range-wave-length frequency speed of light-TX Power-RX Power-TX Antenna Gain-RX Antenna Gain-Target Cross-Section-RX
20、Antenna Aperture4thpower of d 40dB/decade with dSpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing16 of 98Signal-to-noise-ratio(SNR)=4342=4 43 TARGET SNR=SNR depends on scenario and application.15 20 dB
21、typical.=Processing Gain.Typical values for automotive 50dB-70dBSpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing17 of 98Radar WaveformsFMCW Frequency Modulated Continuous wave Frequency of signal incre
22、ases with time Vast majority of commercial radarPMCW Phase Modulated Continuous wave Fixed carrier,phase modulatedOFDM Orthogonal Frequency Division Multiplexing Signal mapped into multiple sub-carriers()()()SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fun
23、damentals of Transceivers for Communication and Sensing18 of 98FMCW RADAR Range measurementDistance converted into frequency1stFFT needed to find=2d/c(-Chirp Duration,c-speed of light)+=/=c2+=SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Tra
24、nsceivers for Communication and Sensing19 of 98FMCW Range Resolution=c/2B=(21)1=B/2d/c=2With =8,1.87Large B easier to achieve at high 0:resolution typically better at higher frequencies=B/2d/c2/=B/2d/c 1/The Range-FFT in Tc,thus the resolution is 1/Tc2/SpeakerVideo 2024 IEEE International Solid-Stat
25、e Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing20 of 98FMCW Removal of Clutters/SpilloverTARGETUNDESIRED_=2/c=2/c_Spillover_=0Spillover=TX LeakageClutter=Echo of undesired targets SpeakerVideo 2024 IEEE International Solid-State Circuits Conferenc
26、eGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing21 of 98FMCW Removal of Clutters/SpilloverTARGET_=2/c=2/c()()Easy removal of clutter and spillover with a Band Pass FilterBand Pass Filter_ _Spillover_SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceG
27、iuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing22 of 98FMCW Bandwidth Compression_=c2 _ baseband and ADC lower frequency(bandwidth compression)=c2_ max range usually limited by SNRWhy FMCW Radar so popular?Bandwidth compression Easy removal of spillover Constant Power
28、Spectral Density(PSD)Constant TX envelopeSpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing23 of 98FMCW Velocity measurement(1/2)=sin2+2=22212,+=42=2=4 =More chirps to retrieve phase variationSpeakerVide
29、o 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing24 of 98FMCW Velocity Measurement(2/2)This is unambiguous only if =4|2For N chirps:Therefore 2123N=2,andSpeakerVideo 2024 IEEE International Solid-State Circuits Co
30、nferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing25 of 98PMCW RADAR Basics(1/3)TX digital data upconverted my mixer,transmitted by PA RX digital data sequence demodulated and compared with several instances of TX digital data shifted in time to retrieve 2d/cRX d
31、igital data(time shifted by 2d/c)TX digital data dSpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing26 of 98PMCW RADAR Basics(2/3)m Correlations?000?0?0Example of Target at=1/=(4)/2 Range resolution=/2=/
32、212 RX dataTX data 0dSpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing27 of 98PMCW RADAR Basics(3/3)PROs Short waveform allows high unambiguous velocityCONs Convolution of square signals with carrier Po
33、wer Spectral density NOT constant.Many techniques to improve PSD exists NO bandwidth compression,more difficult to filter spillover/cluttersRX digital data(time shifted by 2d/c)TX digital data dSpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of T
34、ransceivers for Communication and Sensing28 of 98OFDM RADAR Basics(1/2)=/1 2 symbol=1TARGET=()is a known possible to retrieve()Channel(targets)known sequencereceivedChannel information:map of targets in freq domain()Constant PSDSpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGius
35、eppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing29 of 98OFDM RADAR Basics(2/2)=/1 2 symbol=1TARGET()Constant PSDPROs Short waveform allows high unambiguous velocity Power Spectral density constantCONs NO bandwidth compression,more difficult to filter spillover/cluttersSpea
36、kerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing30 of 98INTERIM QUESTIONSSpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communicat
37、ion and Sensing31 of 98AGENDA Wireless communication basics Radar basics High level view of a few Radar and Communication implementation Integrated Implementation,challenges,key building blocks Beamforming architectures and MIMO(focus on Radar for MIMO)with key building blocks implementations Wirele
38、ss Communications and Radar comparison and requirements ConclusionsSpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing32 of 98FMCW RADAR High level viewVelocityPLL generates chirpsRangeBPF1stFFT2ndFFTPALN
39、APLLMIXVGAADCModern FMCW use fast chirps(100s)PROsIF Bandwidth 35 0.2(dB)2(deg)I/Q imbalance digitally compensated=10log101+2 2 1+cos+11+2 2 1+cos+1 10log102+24 Relative Amplitude mismatch between I/Q Phase mismatch between I/Q(in rad)SpeakerVideo 2024 IEEE International Solid-State Circuits Confere
40、nceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing42 of 98LO I/Q generation at RF:VCO and Dividers Wide Band and reduced PA pulling the VCO I/Q phase sensitive to Duty Cycle(DT)/2LO(t)2fo DT=50%IQ Phase=90I(t)Q(t)LO(t)2fo DT=75%IQ Phase=135I(t)Q(t)IQ A VCO and/4 solve
41、 problem at expenses of higher freq VCOSpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing43 of 98LO I/Q generation at mm-wave Concentrated version of the classical T-line based I/Q splitter More compact
42、than T-Line equivalent000 I/Q based on T-Line(Pozar)SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing44 of 98Sliding IF-1=(1 1)2=1 I/Q lower freq(often done by/N)1stRX MIX is real=a Filter is needed to
43、remove image NO VCO pulling()1+/22221211122SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing45 of 98LO Phase Noise Reciprocal MixingConvolution of unwanted signals(clutters for Radar,blockers for Wirele
44、ss)on top of signal generates extra noise on top of signal LO with Phase Noise=+()+()SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing46 of 98LO Phase Noise Impact on SNR/EVMLO with Phase NoisePhase Noi
45、se convolves together OFDM sub-carriers:to preserve SNR -Same for TX for EVMOFDM sub-carriersOFDM sub-carriersSpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing47 of 98LO Phase Noise Radar vs Communicati
46、on Communication No correlation between TX/RX PLLs(PLLs of two separated Radios)Stringent requirements for higher modulations schemesRadar Correlation between TX/RX PLLs(same PLL used)Correlation is strong for short range and low for long range,attenuating phase noise with distance =4 sin2=4 sin22Sp
47、eakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing48 of 98Voltage Controlled Oscillator(VCO)(1/2)Voltage Controlled Oscillator(VCO)2of gm-stage cancels and enable oscillation How to reduce Phase Noise PN:i
48、ncrease signal amplitude,current,quality factor of tank()=10log102202NoiseLC Quality Factor Equivalent Resistance of LC tankCarrier to offset frequency ratio+SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Se
49、nsing49 of 98Voltage Controlled Oscillator(VCO)(2/2)Tuning range o coarse tuning(switchable C).Extra switches and resistances reduce and increase o fine tuning(varactor)usually AC coupled mm-wave:phase noise+tuning range is a challenge+SpeakerVideo 2024 IEEE International Solid-State Circuits Confer
50、enceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing50 of 98LO generation using multipliers why?=+20log10 One solution for Phase noise+tuning range mm-wave start from VCO lower frequency+multiplier Multiplier has noise floor negligible close to carrierSpeakerVideo 2024
51、 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing51 of 98Multipliers Doubler X2Working Principle Based on non-linearity for large signals 20developed at M1 drain 40and 60shortedCONs NO differential signal 20Short 40,60O
52、pen 2000+20SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing52 of 98Multipliers Tripler X3+01122Working Principle 20,40after 2X and 1 MIX mixes 20,40with 0 1,1,2,2 resonates caps to increase B and align
53、s phases of 40,20 30signal increased1+PROs Efficient 30generation Differential Signal available2020,40300SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing53 of 98RX Low Noise Amplifier(LNA)Active mm-wav
54、e=differential nMOS+cross-coupled cap Low-K(low-coupling)transformers=wide bandwidth coupling Input transformer=wideband single-ended to differential conversion+Low-K transformer Low-K transformer Input transformer Active mm-wave Active mm-wave SpeakerVideo 2024 IEEE International Solid-State Circui
55、ts ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing54 of 98mm-wave gain-cap neutralisationWhy a cross coupled cap=?To cancel Miller effect so:increase B and differential gain improve differential stability+2=-+-associated to added 121=+-associated to parasiti
56、c,limits B1+2=+2 +=+How does it work?SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing55 of 98Lowest noise figure(NF)needed_=2+212+2122+21222=1+2502=10log()-=Noise Factor-,50input voltage noiseHow to im
57、prove NF:Reduce equivalent voltage noise of blocks Increase-trade off with LNA linearityLNAADCVGALPFMIXSpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing56 of 98Linearity:1,3,2,3,2How to reduce(32)?Incre
58、ase 1with higher VDD,current Work at _required_SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing59 of 98RX Linearity CommunicationStrong RF Blockers coupled to RX non-linearity can impair signal quality
59、()()_SIGNAL_sin2+sin2_SignalBlocker3tones due to RX non-linearity()()331_ _requiredSpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing60 of 98RX Linearity OFDM(Comm/Radar)Signal itself self-mixing degrade
60、 SNR/EVM(for RX and TX)3_ need to work below TX_1(3=2 3)RF OFDM Signal at LNA input3tones mix with signal()()()_SIGNAL_33()SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing61 of 98TX Power Amplifier,_1(
61、),(%)PA(and TX)needs to preserve signal quality without clipping To preserve EVM,+1 efficiency decreases 1()High order modulation High PAPR (%)reduced SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing62
62、 of 98TX Chain Linearity 1is a key metric(PA is power hungry)How to keep 1 1:increase,1,etc112=1212112+12112+112PAMIXLPFDAC1,1,1are Output 1SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing63 of 98TX Po
63、wer Amplifier(PA)Mm-wave active stages,low-K transformers+power splitter Combiner:power combiner,single ended output conversion(more combining can be implemented with more stages),ESD protection+ActiveActiveLow-K trans.CombinerPower SplitterActive Low-K trans.SpeakerVideo 2024 IEEE International Sol
64、id-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing64 of 98RX/TX Active Mixer Double balanced structure suppress LO TX MIX:Load tuned to RF frequency RX MIX:RC Filter is part of the ADC anti-aliasing filter DC DACs at source of switches to impr
65、ove LO leakage suppressionTX MIXRX MIX+SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing65 of 98TX MIX How to increase Linearity BB input pair replaced by closed loopo works as an ideal voltage follower
66、o provides=+multiplied by N and fed into RF sectiono N limited by BW(dominant pole)MIX Gain MIX41 (0)oMIX gain stable across PVToHigher input linearity for low+SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and
67、Sensing66 of 98RX MIX Passive ImplementationMIX=4RF F/(+)PROs NO DC current in LO switch NO 1/f noise Low 0 at OPAMP no voltage swing at LO switches improved linearity()+Extra filteringCONs More LO driving vs Active MIX()+=1 +SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiusep
68、pe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing67 of 98Base Band for wideband PGA exampleP=_ /(+)1+_/(+)=1=12+21+1+PROs Wideband:zero cancels equivalent 1.5dB depending on frequency Silicon area:dimensions related to 2100 3 3Splitter SpeakerVideo 2024 IEEE International Sol
69、id-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing76 of 98RF Phase Shifter Discrete Steps S2:0 3 bits(22.5,45,90)Passive and bidirectional.Lumped version,transmission line Bulky,lossy,amplitude changes with phase change calibration 90904545-22
70、.522.5221100SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing77 of 98Phase Shifter Vector Modulator Signal rotated by changing the amplitude of its I and Q components An I/Q splitter is needed ZIF Arch:
71、I/Q comes from free Base Band Beam Forming=cos +()I/QVGAVGA+_+I/QI/Q_+_+_+_SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing78 of 98Base Band BeamformingPROs Splitting(TX)and combining(RX)low frequency,
72、easier than mm-waveCONs LO Buffers and MIX duplicated Phase Shifter in the Analog Path:Bandwidth penaltyIMEC ISSCC 2010I/QVGAVGA+_+_+_+_+_+_+_SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing79 of 98LO
73、Beamforming PROs LO phase control orthogonal to RF(BW on signal path preserved)Split/Combine at mm-wave but on LO,not signal path(no SNR issues)CONs LO generation and MIX duplicated LO phase shift+I/Q at same time Bandwidth limitation due to combination of signals at basebandTokyo Institute of Techn
74、ology JSSCC 2019SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing80 of 98Phase Shifter LC based Variable changes resonance freq phase change(also amplitude)LO buffer stages reduce amplitude variation ov
75、er phase+_+Tuning LO Buffer_+_Phase ShifterSpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing81 of 98Digital BeamformingPROs MIMO/Digital Beamforming N streams possible(one for ADC/DAC)Highest signal ban
76、dwidth(no extra blocks,no combiner)CONs Full Radio+ADC are duplicated:power consumption SERDES needed(extra power)INTEL ISSCC 2023SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing82 of 98Hybrid Beamform
77、ing An intermediate solution between Analog and Digital beamforming.Possible multi-stream(one x ADC/DAC)SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing83 of 9812312340567845671 TX x 8 RX MiMo for RADA
78、R Why?/2Physical Array Angle of Arrival is retrieved by looking at phase of different RX Angular Resolution =2Example of 1 TX and 8 RXSpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing84 of 984 /21231234
79、056784567214023123402456712 TX x 4 RX 8 Virtual RX1 TX x 8 RX MiMo for RADAR Virtual ArrayVirtual Array=Convolution of x=Angular Resolution =2/2/2TX1 and TX2 are orthogonal signals(RXs can discriminate the two TXs)SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT
80、10:Fundamentals of Transceivers for Communication and Sensing85 of 98MiMo for RADAR A Physical ViewVirtual array equivalent to physical elements TX array(=8)RX array(=4)Virtual array(=8 4=32)No sidelobes Sidelobes due to L l/2RX Sidelobes located at TX zeros removedSpeakerVideo 2024 IEEE Internation
81、al Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing86 of 98Communication MiMo vs BeamformingMiMoBeamformingData Rate orReliability of a single data streamMultiple StreamsYESSingle StreamNOEIRP 2SNR Array BeamWidth(,=Antenna beam width),20
82、.886,20.886 MiMo for data-rate,channel stability Beamforming for extending link distance(higher EIRP and SNR)SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing87 of 98Radar MiMo vs BeamformingMiMoBeamfor
83、mingAngular Resolution at RX side22EIRP 2SNR Array Beam Width(,=Antenna beam width),20.886 20.886 MiMO for angular resolution Beamforming for range(higher EIRP and SNR)SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communicat
84、ion and Sensing88 of 98AGENDA Wireless communication basics Radar basics High level view of a few Radar and Communication implementation Integrated Implementation,challenges,key building blocks Beamforming architectures and MIMO(focus on Radar for MIMO)with key building blocks implementations Wirele
85、ss Communications and Radar side by side ConclusionsSpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing89 of 98FMCW Radar vs QAM CommPLL:FMCW needs a chirp,QAM Comm is fixed freqTX:FMCW just PA driven by
86、VCO/Multiplier,Comm needs DAC+FilterPA:FMCW PAPR=0dB/QAM Comm higher PAPR(7dB for 64QAM)RX I/Q:FMCW can avoid I/Q RX with 3dB SNR penaltyRX,ADC:FMCW enjoys bandwidth compression,so IF freq lower than CommLNA:FMCW may need more linearity for clutters SpeakerVideo 2024 IEEE International Solid-State C
87、ircuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing90 of 98PMCW Options to improve PSDNo pulse shaping PM Phase Modulator implemented by inverting polarity of Carrier with DataPulse shaping TX can use I/Q to better shape the pulses and improve power spec
88、tral density(PSD)SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing91 of 98PMCW vs QAM Comm PLL:no chirp needed RX and ADC:similar line up(no BW compression for PMCW Radar)TX section:PMCW and Comm shares
89、 similar line-ups PA:PMCW limited PAPR,QAM Comm higher PAPR(7dB for 64QAM)LNA:PMCW may need more linearity for clutters SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing92 of 98OFDM Radar vs QAM Comm-Ra
90、dio RX,TX and ADC:similar line up(no BW compression for OFDM Radar)PLL:no chirp needed PA:OFDM Radar limited PAPR,QAM Comm higher PAPR(7dB for 64QAM)LNA:OFDM Radar needs more linearity for clutters SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals
91、of Transceivers for Communication and Sensing93 of 98Summary COMM and RADAR systems share similar circuits and challenges FMCW Radar has several advantages but different arch vs a COMM system OFDM COMM and PMCW/OFDM RADAR=similar architecture Sliding-IF can be better than vs ZIF for mm-wave circuits
92、(I/Q generation)Frequency multipliers play a key role in mm-wave applications Base Band BW can be limiting factor for 100GHz applications Beamforming and MIMO systems will be common moving up in frequencies COMM and RADAR represents two facets of the same scenario:a message is transmitted into the s
93、urrounding environmento COMM=focus on the messageo RADAR=focus on the environmentSpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing94 of 98Papers to see this year4.1 A 79.7W Two-Transceiver Direct-RF 7.8
94、75GHz UWB Radar SoC in 40nm CMOS5.4-A 22.4-to-30.7GHz Phased-Array Receiver with Beam-Pattern Null-Steering and Beam-Tracking Techniques Achieving 30.2dB OTA-Tested Spatial Rejection5.5-A Stacking Mixer-First Receiver Achieving 20dBm Adjacent-Channel IIP3 Consuming less than 25mW23.4-A 167W 71.7dB-S
95、FDR 2.4GHz BLE Receiver Using a Passive Quadrature-Front-End,a Double-Sided Double-Balanced Cascaded Mixer and a Dual-Transformer-Coupled Class-D VCO23.5-A 7.6mW IR-UWB Receiver Achieving 13dBm Blocker Resilience with a Linear RF Front-End24.2-A Scalable 134-to-141GHz 16-Element CMOS 2D/2-Spaced Pha
96、sed Array24.3-A 236-to-266GHz 4-Element Amplifier-Last Phased-Array Transmitter in 65nm CMOS SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing95 of 98REFERENCES1.Rf Microelectronics,2ndedition 2014-Behz
97、ad Razavi2.Luck,David G.C.Frequency Modulated Radar,McGraw-Hill,New York City,19493.D.M.Pozar,Microwave Engineering,Third Edition,John Wiley&Sons:New York,20054.C.H.Wu et al.,A 60nm WiFi/BT/GPS/FM combo connectivity SOC with integrated power amplifiers,virtual SP3T switch,and merged WiFi-BT transcei
98、ver,2013 IEEE Radio Frequency Integrated Circuits Symposium(RFIC),Seattle,WA,USA,2013,pp.129-132,5.A.Mirzaei,H.Darabi,J.C.Leete and Y.Chang,Analysis and Optimization of Direct-Conversion Receivers With 25%Duty-Cycle Current-Driven Passive Mixers,in IEEE Transactions on Circuits and Systems I:Regular
99、 Papers,vol.57,no.9,pp.2353-2366,Sept.20106.G.Gramegna et al.,A 56-mW 23-mm/sup 2/single-chip 180-nm CMOS GPS receiver with 27.2-mW 4.1-mm/sup 2/radio,in IEEE Journal of Solid-State Circuits,vol.41,no.3,pp.540-551,March 20067.V.Vidojkovic et al.,A low-power 57-to-66GHz transceiver in 40nm LP CMOS wi
100、th 17dB EVM at 7Gb/s,2012 IEEE International Solid-State Circuits Conference,San Francisco,CA,USA,2012,pp.268-270,doi:10.1109/ISSCC.2012.6177011.SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing96 of 98
101、REFERENCES8.S.Bozzola et al.,A sliding IF receiver for mm-wave WLANs in 65nm CMOS,2009 IEEE Custom Integrated Circuits Conference,San Jose,CA,USA,2009,pp.669-672 9.M.Elkhouly et al.,Fully Integrated 2D Scalable TX/RX Chipset for D-Band Phased-Array-on-Glass Modules,2022 IEEE International Solid-Stat
102、e Circuits Conference(ISSCC),San Francisco,CA,USA,2022,pp.76-7810.J.D.Dunworth et al.,A 28GHz Bulk-CMOS dual-polarization phased-array transceiver with 24 channels for 5G user and basestation equipment,2018 IEEE International Solid-State Circuits Conference-(ISSCC),San Francisco,CA,USA,2018,pp.70-72
103、11.H.-C.Park et al.,4.1 A 39GHz-Band CMOS 16-Channel Phased-Array Transceiver IC with a Companion Dual-Stream IF Transceiver IC for 5G NR Base-Station Applications,2020 IEEE International Solid-State Circuits Conference-(ISSCC),San Francisco,CA,USA,2020,pp.76-7812.K.Raczkowski,W.De Raedt,B.Nauwelaer
104、s and P.Wambacq,A wideband beamformer for a phased-array 60GHz receiver in 40nm digital CMOS,2010 IEEE International Solid-State Circuits Conference-(ISSCC),San Francisco,CA,USA,2010,pp.40-4113.J.Pang et al.,A 28-GHz CMOS Phased-Array Transceiver Based on LO Phase-Shifting Architecture With Gain Inv
105、ariant Phase Tuning for 5G New Radio,in IEEE Journal of Solid-State Circuits,vol.54,no.5,pp.1228-1242,May 2019SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing97 of 98REFERENCES14.A.Agrawal et al.,“A 12
106、8Gb/s 1.95pJ/b D-Band Receiver with Integrated PLL and ADC in 22nm FinFET”,2023 IEEE International Solid-State Circuits Conference-(ISSCC),San Francisco,CA,USA15.S.Murali,K.Subburaj,B.Ginsburg and K.Ramasubramanian,Interference detection in FMCW radar using a complex baseband oversampled receiver,20
107、18 IEEE Radar Conference(RadarConf18),Oklahoma City,OK,USA,2018,pp.1567-1572,doi:10.1109/RADAR.2018.8378800.16.A.Visweswaran et al.,9.4 A 145GHz FMCW-Radar Transceiver in 28nm CMOS,2019 IEEE International Solid-State Circuits Conference-(ISSCC),San Francisco,CA,USA,2019,pp.168-170,doi:10.1109/ISSCC.
108、2019.8662357.17.D.Guermandi et al.,A 79GHz 22 MIMO PMCW radar SoC in 28nm CMOS,2016 IEEE Asian Solid-State Circuits Conference(A-SSCC),Toyama,Japan,2016,pp.105-108,doi:10.1109/ASSCC.2016.7844146.18.S.Sireesh et al,”A 4b RFDAC at 8GS/s for FMCW Chirps with 4GHz Bandwidth in 10s”,2023 IEEE Internation
109、al Solid-State Circuits Conference-(ISSCC),San Francisco,CA,USA,202319.A.Bourdoux,Keynote Digitally Modulated Radars for Automotive Applications,2022 19th European Radar Conference(EuRAD),Milan,Italy,2022SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundame
110、ntals of Transceivers for Communication and Sensing98 of 98REFERENCES20.M.C.Budge and M.P.Burt,Range correlation effects in radars,The Record of the 1993 IEEE National Radar Conference,Lynnfield,MA,USA,1993,pp.212-21621.60 GHz TX Front-Ends in Advanced CMOS Technologies with Improved Back-Off Effici
111、encies Khaled Khalaf,Vojkan Vidojkovic,John R.Long&Piet Wambacq chapter First Online:10 April 201922.S.Li,T.Chi,T.-Y.Huang,M.-Y.Huang,D.Jung and H.Wang,A Buffer-Less Wideband Frequency Doubler in 45-nm CMOS-SOI With Transistor Multiport Waveform Shaping Achieving 25%Drain Efficiency and 4689 GHz Ins
112、tantaneous Bandwidth,in IEEE Solid-State Circuits Letters,vol.2,no.4,pp.25-28,April 201923.A.Kankuppe,S.Park,P.T.Renukaswamy,P.Wambacq,and J.Craninckx,“A wideband 62-mW 60-GHz FMCW radar in 28-nm CMOS,”IEEE Trans.Microw.Theory Techn.,vol.69,no.6,pp.29212935,Jun.2021SpeakerVideo 2024 IEEE International Solid-State Circuits ConferenceGiuseppe GramegnaT10:Fundamentals of Transceivers for Communication and Sensing99 of 98Please Scan to Rate Please Scan to Rate This PaperThis Paper