PLE — 一種新的分層萃取多任務學習網絡結構.pdf

編號:29563 PDF 32頁 2.98MB 下載積分:VIP專享
下載報告請您先登錄!

PLE — 一種新的分層萃取多任務學習網絡結構.pdf

1、Progressive Layered Extraction (PLE)Output AOutput B一種新的分層突取多任務不個Tower ATower B學習(MTL)模型和由此關于AdI的一點思著劉軍寧InputTencent騰訊#page#Short Bio廣秀淘Tencent騰訊E螞蟻金服新華智云一OnBDADVERPLEXTencent騰訊#page#Outline1.Background: Recommender System GRS)MultitaskLearning(MTL)多任務學習為什么MTL成為RS廣泛采用范式2.PLE分層萃取多任務學習模型3.強人工智能-AGI的一點

2、思考Tencent騰訊#page#BackgroundRecommender System: Most widely used AI technique2勺視頻信息流:YouTube微視19BIGOLIVE花椒直播淘寶直播抖音快手下一代信息流TikTokQO視頻號meitu美圖社交:學看一看淘蘑菇街美團電商:woouozeue京東頭條傳統信息流:騰訊新聞知乎新浪微博今日頭條騰訊看點第一代信息流Tencent騰訊#page#BackgroundIndustry RS Mainstream Approach: Multitask learning(MTL) 排序層9.工業界案例分享多目標學習在推薦

3、系統中的應用(1)美團本文櫥路美團消你喜歡”深度學習排序模型實踐,地址R(2)知乎進擊的下一代推薦系統:多目標學習如何讓知學用戶互動率提升100%?,地址:保2020 Google開發者大會33s/GUMz官方最全技術HjQvzdGVOkKz4zA口干貨集錦?。?)美面0馬上直收當推薦退到社交:美面的推薦算法設計優化實踐,地址:nES多任務學習在美圍維薦排序的近期實踐,地址QOSW33Q8QTfATTencent騰訊#page#Common MTL StructuresHard Parameter Sharing Caruana, 1997Task ATask Bsame sharing pa

4、rameters for different tasksTask-specificlayers=negative transferTower ATower BSharedlayersInputTencent騰訊#page#Common MTL StructuresHard Parameter Sharing ICaruana,1997same sharing parameters for different tasksnegative transferASKs Soft Parameter Sharing between single task and hard sharingConstrai

5、nedlayersTencent騰訊#page#Common MTL StructuresCross-stitch Network Misra et al,2016Hard Parameter Sharing ICaruana,1997 same sharing parameters for different tasksnegative transfer Soft Parameter Sharing between single task and hard sharingCross-stitchNetwork(十字繡網絡)IMisraetal,2016&SluiceNetwork(水閘網絡)

6、Ruderetal,Sluice Network Ruder et al,20172017static fusing weights售Tencent騰訊#page#MTL Benefit增強遷移/泛化:InductiveBias歸納偏置Knowledgesharing:InductiveTransfer歸納遷移,減少訓練數據量需求BetterRegularization鼓勵模型學通用的共享的東西利于學到適用新任務上的泛化表征Coordinated representation learning互助特征表征學習- More efficient representation learning co

7、mpared to single taskGeneral Learning FrameworkNLPCV Recommendation SystemTencent騰訊#page#Why widely adopted in RS?用戶滿意度難以直接學習:非常復雜的深度語義變量無直接pointwise量化監督S月14日度快辦證哈利波特整體對應人均時長+留存率豐富具體隱式反饋:目標偏差|物品偏差|用戶偏差subscribe充分學習,用上所有掌握的信息helpsrep.learningMTL高效協同學習具體任務play/pauseMTL工程便利-like為什么是最近2年:傳統feeds流產品形態全屏沉

8、浸式詳情頁comnment傳統相對串行:Ctr/Cwr微視額百萬紅傳統模型結構的不斷換代shareLR/GBDT/deep&wide/FM/DNN/DeepFM哈利波特與發布超清修復版favor.etc照,時隔188月14號重映強化學習RL進展navigateTencent騰訊#page#Multi-goal Fusion Ranking in RS通過樣本權重進行多目標優化簡單粗糙多個單模型分數融合:多目標人工上帝拍定融合公式:聘子摸象長期目標監督融合公式學習還是Learning To Rank (LTR):單目標?人工heuristic定義多種規則偏序關系偏序關系難以完整覆蓋和精確定義,監

9、督不充分MTL +Rerank:MTL in RS: hard sharing ESMMMMOEPLETISH sokea uorees pyx6:reIogTencent騰訊#page#ESIMM(Entire Space Multitask Model)PCTCVR阿里18年提出2CTF全在中主要解決CTR/CVR類型不對稱串行任務緩解SSB(SampleSelectionBias)Concatenate緩解DS(DataSparsity)Field-wisePoolng Layer局限EmbeddingCVR仍可更充分監督Laye核心在于保證Conversion/Impressionus

10、er tielcAssumption:CVR-tCTR-tasl最大化Pointvvise轉化=最大化用戶體驗L)(y,f(x0)+(y&zf(x0)xf(x0)Tencent騰訊#page#MMoE(Multi-gate Mixture-of-Experts)OutrCuiOutput AOutput BglamolTowerATowerATowerBGaleAGalaBExpertoExpertExpenGateExpert0Expent1Expent2MoEMMOE Ma et al,2018 Google提出Bagging式的多專家集成no task-specific expertCo

11、nditional Computation:single-level experts and gatessingle gate for alf tasksTencent騰訊#page#Challenge - seesaw phenomenonComplex task correlations Negative Transfer: Seesaw phenomenon:improve performance of one task often at the price of others0.130Complicatedly Correlated Task Group1 watchtime 2 th

12、res0.131VTR(View Through Rate)10watch time=50K)Task2(marital status =never married)MMOEPLEModelsAUCMTLGainonv.MTLGainCorrelation 0.2Correlation 0.4Correlation 0.510.010-0.9923Single-Task0.94450.0050.005SoooMMOE0.9393+0.00480.9928+0.0005PLE0.9522+0.00780.9945+0.00220.000oo0o0.000Task1Task2Task1Task2T

13、ask2Task1Ali-CCP DatasetCorrelationAverage0.005(84M samples fromn Taobaos recommender system)0.000.005CTRClick-Through Rate)CVRConversion Rate)Models-0.01oooo0.000AUCMTLGainAUCMTLGainTask1Task1Task2Task2Task1 Task2 overallSingle-Task0.60880.6040MMOE0.6094+0.00060.5738-0.0302Vconsistently outperforms

14、 across differentPLE0.61120.6097+0.0024+0.0057correlation patterns and different applicationsTencent騰訊#page#Contribution of PLEseparates shared experts and task-specific experts explicitly= introduces multi-level customized gate control with an novel progressive separationroutingsCoordinated represe

15、ntation learning共享學習網絡共享學習網絡共享學習網絡(結構分化,浙進分離)(分解但無分化)協同表征共享學習簡單輸出共享學習outperforms state-of-the-art MTL models, eliminates the negative transfer.and seesawphenomenon across different task correlations,task-group sizes and applicationsProgressive Layered Extraction CPLE):A Novel Multi-Task Learning (MT

16、L) Model forPersonalized Recommendations hps:ildl.acm.org/doilaba/l0.1145/3383313.3412236ACMRecSys2020最佳長論文(Best LongPaperAward)Tencent騰訊#page#NAS in MTL Still Early StageStrong assumptionnarrow framework= Network structures are not continuous: both structure and utilityHard to find gradient pathTen

17、cent騰訊#page#AGI的一種設想Task 3Task 1New TaskTask 2表達層Meta learning推演層MTLChoose modulesfor each layer表示層MTL輸入層Tencent騰訊#page#AGI的一種設想Learning Layers輸人層:Quantization&Normalization表示層(MTL)推演歸納層(MTL)表達層C Standardized module libraries for each layer開放工具箱,可進化MetaLearning 模塊 choose modules for each layer000判斷設計新網絡的必要性工具擴展進化:GAN,ES,RLTencent騰訊#page#謝謝哈聽!Tencent騰訊

友情提示

1、下載報告失敗解決辦法
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站報告下載后的文檔和圖紙-無水印,預覽文檔經過壓縮,下載后原文更清晰。

本文(PLE — 一種新的分層萃取多任務學習網絡結構.pdf)為本站 (X-iao) 主動上傳,三個皮匠報告文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。 若此文所含內容侵犯了您的版權或隱私,請立即通知三個皮匠報告文庫(點擊聯系客服),我們立即給予刪除!

溫馨提示:如果因為網速或其他原因下載失敗請重新下載,重復下載不扣分。
客服
商務合作
小程序
服務號
折疊
午夜网日韩中文字幕,日韩Av中文字幕久久,亚洲中文字幕在线一区二区,最新中文字幕在线视频网站