吳仕櫓-大數據的智能處理和數據可視化實踐(9頁).pdf

編號:82936 PDF 9頁 1.84MB 下載積分:VIP專享
下載報告請您先登錄!

吳仕櫓-大數據的智能處理和數據可視化實踐(9頁).pdf

1、 全球敏捷運維峰會 廣州站PUBLICBig Data Intelligent Processing&Data Visualization演講人:吳仕櫓 全球敏捷運維峰會 廣州站PUBLICBusiness Insights&Analytics How it Works123456781)Source systems are ingested into staging(a shared preparation area).Typically through Sqoop(database copy)or CDC(streaming style change updates)or Juniper(

2、in the house platform)2)System tables are copied into the Discovery environment,where this production data is processed and models/insight are developed post Data Factory3)The Data Factory takes raw data through a number of steps:i.Profiling:looking at the data to identify its contents and tag it wi

3、th the correct metadataii.Cleansing&curating:restructuring the data into the simplest and most efficient form,highlighting errors to revert back to source system ownersiii.Enriching:creating new derived fields based on the raw data(e.g.flags)and appending reference data for models to utiliseiv.Recor

4、d linking:using advanced techniques to join up disparate data and masses of separate sources into a single logical modelv.Indexing:organising the final data asset into an index,making it quickly searchable4)Stabilised assets and models are pushed through our UAT environment for testing and data vali

5、dation from the consuming users5)Final models and assets are then landed in our production environment;their insight ready for consumption through agreed patterns(typically APIs or file transfers)6)The Data Guardian will control all consumption compliance7)Data Exchange hosts APIs/APPs to source dat

6、a to consumers 全球敏捷運維峰會 廣州站PUBLICData&Analytics ExecutionAutomated feed of data,copying the source systems into the GBM Data&Analytics LakeData is pre-processed,transformed and optimised by Data EngineersThe tagged data is linked and enriched using machine learning,generating unique identifiers for

7、clientsThe enriched data is validated against business rules to ensure that it is fit for purpose Data is profiled to tag components for metadata analysisAlgorithms used to predict data type and automatically tagThe finalised data is passed into a range of MI,analytics and data science applications

8、to generate business valueIngest TransformProfileLinkAnalyse ConsumeRaw XMLTrade DataPre-processedSource DataMetadata ModellingRecord linked Network GraphData Validation ResultsTime-series ApplicationCase 1Use Cases in ExecutePipelineExampleTechnologiesCase 2Case 3Case 4Case 5Case 6Case 8Case 7 全球敏捷

9、運維峰會 廣州站PUBLICData Guardian-1Information Asset RegistryGolden source for physical to logical mappings,mastered in data factoryRepository for logical attribute hierarchy,containing terms where necessarySource DataData ingested from hundreds of source systemsData cleansed via GBM Data FactoryData pres

10、ented in use case assetsData GuardianPolicy Administration tool linked up with meta data store,allows policy rules to be entered in logical termsEach“data access request type”is assed by Policy Engine in order to produce a Policy Decision Point summarizing the resultant compliant datasetAutomatic ad

11、aption of queries and in process filters in order to produce compliant data viewData Sharing Policys obtained from regional legal and compliance teamsPolicy converted into set of sharing rulesRules converted into Standard Rules Template ready for consumptionData AssetComplianceRulesAttribute TaggingAuditAutomaticImpact 全球敏捷運維峰會 廣州站PUBLICData Guardian-2 全球敏捷運維峰會 廣州站PUBLICData Exchange 全球敏捷運維峰會 廣州站PUBLICRapid-V Design 全球敏捷運維峰會 廣州站PUBLICRapid-V Demo 全球敏捷運維峰會 廣州站PUBLICRapid-V Sample

友情提示

1、下載報告失敗解決辦法
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站報告下載后的文檔和圖紙-無水印,預覽文檔經過壓縮,下載后原文更清晰。

本文(吳仕櫓-大數據的智能處理和數據可視化實踐(9頁).pdf)為本站 (小時候) 主動上傳,三個皮匠報告文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。 若此文所含內容侵犯了您的版權或隱私,請立即通知三個皮匠報告文庫(點擊聯系客服),我們立即給予刪除!

溫馨提示:如果因為網速或其他原因下載失敗請重新下載,重復下載不扣分。
客服
商務合作
小程序
服務號
折疊
午夜网日韩中文字幕,日韩Av中文字幕久久,亚洲中文字幕在线一区二区,最新中文字幕在线视频网站