2019年AI和ffmpeg_gstreamer的應用實踐.pdf

編號:97363 PDF 26頁 10.65MB 下載積分:VIP專享
下載報告請您先登錄!

2019年AI和ffmpeg_gstreamer的應用實踐.pdf

1、AI和FFmpeg/gstreamerAgenda FFmpeg Gstreamer FeatherNet for face anti-spoofingFFMPEGFFmpeg is the most popular open-source multimedia manipulation tools with a library of plugins that can be applied to various parts of the audio and video processing pipelines and have achieved wide adoption across the

2、 world Video encoding,decoding and transcoding are some of the most popular applications of FFmpeg,and Multiplatform is supported such as Linux/Android/Windows.ffmpeg-qsv and ffmpeg-vaapi are providing HW acceleration for intel platforms.repo link:https:/git.ffmpeg.org/ffmpeg.githttps:/git.libav.org

3、/FFmpegDNN in FFmpegGuo YejunDNN in FFmpegGstreamer結構9FeatherNet for Face Antispoofing10Face Anti-spoofing competitionCVPR2019us11Feather for(Face Anti-spoofing)next level details數據源由Intel realsense采集12Feather:Feathernet,MobileLiteNetA/BOur Model:as lite as FeatherMore preciseBlocks used in FeatherN

4、etsBN ReLU63x3 DWConv1x1 Conv1x1 ConvBN ReLU66 x ccBNOutputInputcAddAddBN ReLU61x1 Conv1x1 ConvBN ReLU6BNOutputInput1x1 Conv6 x c2x2 AVG Pool(stride=2)3x3 DWConv(stride=2)BNBlockB:Down-Sampling BlockBlockA:Inverted Residual BlockccccApproachcBN ReLU61x1 Conv1x1 ConvBN ReLU6BNOutputInput6 x c3x3 DWCo

5、nv(stride=2)cBlockC:Down-Sampling BlockWithout AVGPoolingFeatherNetA-BlockA,BlockCFeatherNetB-BloackA,BlockBNetwork ArchitectureApproachStreaming ModuleThe last blocks output is down-sampledby a depth-wise convolution layer and flattened directly into a feature vector.ApproachStreaming Module Approa

6、chRF of center unitRF of corner unitLast 7x 7 Feature Map(one channel)Input Image Units at different position in feature map correspond different receptive field ExperimentsA Newly Collected Dataset:Multi-Modal Face Dataset(MMFD)Intel RealSense SR300 depth camera is utilized 15000+real sample,28000+

7、fake samples,15 subjects RGB,Depth and IR modalities 2 new attack ways-flat face photo with eyes and mouth cut-curved face photo with eyes and mouth cut Variations-distance to camera,face pose,emotion,wearing glass/hat or notExperimentsData Augmentation for MMFDProblem:Although we used the same capt

8、uring device as CAISA-SURFused,the character of the depth image are different.Solution:Depth Imagesfrom CASIA-SURFDepth Images from MMFDProcessed depth images from MMFDExperimentsPerformance improved by introducing MMFDCASIA-SURFMMFD0.00168MMFD0.00677CASIA-SURF0.009710.0010.0030.0050.0070.0090.0110.

9、0130.0150.0170.019ACER0.008030.00294ExperimentsModelSizevs.ACERFishNet150MobileNet-V2ShuffleNet-V2FeatherNetB00.0010.0020.0030.0040.005051015202530Params(Millions)ACERFeatherNetB0.350.00168ShuffleNet-V21.260.00451MobileNet-V22.230.00228FishNet15024.960.00144Params(Millions)ExperimentsAblationExperim

10、entsDepth_Model_1Depth_Model_2Depth_Model_N-1Depth_Model_N10realfakeIR_Modelupdated ensemble score with IR scoresfakerealfakerealhigh scoresUncertain samples are further classified by IR classifierlow scoresEnsemble classifierDepthImagesIR ImagesEnsembleensemblecascadeCompetitionMulti-Modal Fusion S

11、trategyRESULT:0.0013(ACER),0.999(TPRFPR=10e-2),0.998(TPRFPR=10e-3)and 0.9814(TPRFPR=10e-4)DemoImage Capture RGB image(1280*720)Depth image(640*480)Aligned RGB(640*480)FAKEIDAlign to RGB image Realsense:image capture and alignmentOpenVINO:CNN inferenceOpenCV:intermediate data processing the biggest face boxdetected facesthe biggest face box alignedLIVEface detection face anti-spoofing Landmark detection&face alignment Face recognitionworkflowQ&A

友情提示

1、下載報告失敗解決辦法
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站報告下載后的文檔和圖紙-無水印,預覽文檔經過壓縮,下載后原文更清晰。

本文(2019年AI和ffmpeg_gstreamer的應用實踐.pdf)為本站 (云閑) 主動上傳,三個皮匠報告文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。 若此文所含內容侵犯了您的版權或隱私,請立即通知三個皮匠報告文庫(點擊聯系客服),我們立即給予刪除!

溫馨提示:如果因為網速或其他原因下載失敗請重新下載,重復下載不扣分。
客服
商務合作
小程序
服務號
折疊
午夜网日韩中文字幕,日韩Av中文字幕久久,亚洲中文字幕在线一区二区,最新中文字幕在线视频网站