《用于諧振開關電容轉換器實際實現的有源調諧控制.pdf》由會員分享,可在線閱讀,更多相關《用于諧振開關電容轉換器實際實現的有源調諧控制.pdf(20頁珍藏版)》請在三個皮匠報告上搜索。
1、OCP Global Summit October 18,2023|San Jose,CAHaifah Sambo,Rose Abramson,Yicheng Zhu,Sahana Krishnan,Margaret Blackwell and Robert Pilawa-PodgurskiActive Tuning Control for Practical Implementations of Hybrid and Resonant Switched-Capacitor ConvertersUC Berkeley,Department of Electrical Engineering a
2、nd Computer SciencesHybrid Switched-Capacitor(SC)Converters1 Z.Ye,S.Sanders and R.C.N.Pilawa-Podgurski,“Modeling and Comparison of Passive Component Volume of Hybrid Resonant Switched-Capacitor Converters”,TPEL 2022.1)High Power Density2)High Efficiency Intermediate Bus Converter Output Options12 V
3、bus-legacy hardwareEmerging 12 V bus Opportunity for higher fixed-ratio convertersIncreased overall system efficiencyStep closer to vertical power delivery(2nd-stage)Power comes in at 48 V Shorter distance,lower I2R losses48 V Two-Stage Datacenter Architecture4 12 V busBuck:2059 mm3Pure SC:272 mm3Re
4、sonant SC:76 mm3ReSC/Pure SC:99%Buck:97%Data Center Power Delivery Architecture Intermediate Bus Converter Family1 T.Ge,Z.Ye and R.C.N.Pilawa-Podgurski,Geometrical State-Plane Analysis of Resonant Switched-Capacitor Converters:Demonstration on the Cascaded Multiresonant Converter,in IEEE Transaction
5、s on Power Electronics,vol.38,no.9,pp.11125-11140,Sept.2023.2 R.A.Abramson,Z.Ye and R.C.N.Pilawa-Podgurski,A High Performance 48-to-8 V Multi-Resonant Switched-Capacitor Converter for Data Center Applications,2020 22nd European Conference on Power Electronics and Applications(EPE20 ECCE Europe),Lyon
6、,France,2020,pp.1-10.3 R.A.Abramson,Z.Ye,T.Ge and R.C.N.Pilawa-Podgurski,A High Performance 48-to-6 V Multi-Resonant Cascaded Series-Parallel(CaSP)Switched-Capacitor Converter,2021 IEEE Applied Power Electronics Conference and Exposition(APEC),Phoenix,AZ,USA,2021,pp.1328-1334,doi:10.1109/APEC42165.2
7、021.9487048.Need for Active Soft-SwitchingVin+-CinLpar(in)+S1B 1B Cout+IloadLCfly+S2B 2B S1A 1A S2A 2A vswiLVoutMaximize efficiency(at light-loads or high frequencies).Finite input and output filtering capacitance.Primary passive component tolerance and variations.Active Soft-Switching TechniquesLoa
8、d transients and variations.2:1 Resonant Switched-Capacitor ConverterClass II Ceramic Capacitor DeratingInductor Soft SaturationVin+-CinLpar(in)+S1BCout+LCfly+S2BS1AS2ACs1Rs1Cs2Rs2+-Vth,div1RC voltage dividerHigh-speedcomparatorActive tunervswvsw,div2FPGAIloadvcompPower stageControl stage12iLDeadtim
9、e 1Deadtime 2vswPhase 1Phase 2Iload0 V0 AVin/2ZCS Autotuning Non-ideal ZCS results in deadtime spikes on.Control circuitry can be implemented with a single voltage comparator.No current sensing required.,ZCS ConvergenceComplete convergence process 5 msNoticeable spikes on No noticeable spikes on Vin
10、+-CinLpar(in)+S1BCout+LCfly+S2BS1AS2ACs1Rs1Cs2Rs2+-Vth,div1A2ARC voltage dividerHigh-speedcomparatorActive tunervswvsw,div1B2BFPGAIloadvcompPower stageControl stage1B1A2A2BiLIoffIonvswPhase 1Phase 2Td1Td1Td2Td20 V0 AVin/2ZVS Autotuning Non-ideal ZVS results in discontinuities on.Control circuitry ca
11、n be implemented with a single voltage comparator.No current sensing required.Load Step ResponseOpen-loop ZVSActive ZVS,ZVS timing changes with load.Complete ZVS is not maintained.Dynamic tracking of varying ZVS timing.Complete ZVS is maintained.Control TechniquePeak EfficiencyActive ZVS99.4%Open-lo
12、op ZVS99.2%Active ZCS99.1%Open-loop ZCS99.0%Efficiency vs.LoadEfficiencyNeed for Active Soft-ChargingPrimary passive component tolerance and variations.Active Soft-Charging TechniquesLoad transients and variations.Topological constraints on soft-chargingC1S1C2ResrHard-chargingSoft-chargingHard-charg
13、ing leads to large current spikes increased losses,EMI Resonant Dickson ConverterSplit-Phase Control4:1 Single-ended Resonant DicksonPhase 1aPhase 1bSplit Phase 1 into 1a and 1bCertain Dickson topologies cannot achieve soft-charging with a single inductor Split-phase control connects capacitors to t
14、he SC-network in a staggered approach to achieve full soft-chargingPhase 1(No Split-Phase)If the time of the split is incorrect,hard-charging will occur.Resonant Dickson ConverterSplit-Phase Control4:1 Single-ended Resonant DicksonTsw/2 0Tsw-Tsw/2 VC1,shortVC1,idealVC1,longt1a,shortt1a,idealt1a,long
15、Phase 1t1aPhase 2t2a1a3Tsw/2 Phase 1t1t2t1t1bt1bCapacitor Voltage WaveformsThis hard charging can be detected by discontinuities on the capacitor voltage.Active Split-Phase ControlCan use active control to sense capacitor discontinuities and adjust split timingSensing and Control CircuitryControl Da
16、ughterboardActive Split-Phase ControlCan use active control to sense capacitor discontinuities and adjust split timingTransient Response Control can re-converge on correct timing under load transients(in 15)Load Step UpLoad Step DownSummaryHybrid switched-capacitor(SC)converters are competitive cand
17、idates for intermediate bus voltage applicationsCan achieve high efficiency and power density at fixed-ratio outputsAutotuning techniques can be used to increase robustness of hybrid SC converters and allow for more cost-effective design and operationAutomatic soft switching(ZVS and ZCS)Automatic so
18、ft-charging of flying capacitorsCin Cfly FET L Cout RC divider High speed comparatorActive Soft-Charging Control BoardActive Soft-Switching Control BoardReferenced Active Tuning Work1 H.B.Sambo et al.,Autotuning of Resonant Switched-Capacitor Converters for Zero Current Switching and Terminal Capaci
19、tance Reduction,2023 IEEE Applied Power Electronics Conference and Exposition(APEC),Orlando,FL,USA,2023.2 H.B.Sambo et al.,“Autotuning of Resonant Switched Capacitor Converters for Zero Voltage Switching Operation,2023 IEEE 24th Workshop on Control and Modeling for Power Electronics(COMPEL),Ann Arbo
20、r,MI,USA,2023.3 R.A.Abramson et al.,An Active Split-Phase Control Technique for Hybrid Switched-Capacitor Converters Using Capacitor Voltage Discontinuity Detection,2023 IEEE 24th Workshop on Control and Modeling for Power Electronics(COMPEL),Ann Arbor,MI,USA,2023.Haifah Sambohsamboberkeley.eduRose Abramsonrose_abramsonberkeley.eduYicheng Zhuyczhuberkeley.eduSahana Krishnansahana_krishnanberkeley.eduMargaret Blackwellblackwellberkeley.eduRobert Pilawapilawaberkeley.eduBerkeley Power&Energy CenterBPECOCP Global Summit|October 18,2023|San Jose,CA