《PFAS 處理:有關科學和應用現狀的更多信息.pdf》由會員分享,可在線閱讀,更多相關《PFAS 處理:有關科學和應用現狀的更多信息.pdf(34頁珍藏版)》請在三個皮匠報告上搜索。
1、Evaluation of PFAS Removal by Surface Active Foam Fractionation and Destruction by Electrochemical OxidationHanna Temme,PhDLaura LewisRebecca MoraProject Area Twin Cities east metro area,Minnesota Over 125 sq miles of PFAS impacted groundwater and surface water PFOS ImpactsFeasibility Study Completi
2、ng a feasibility study for Minnesota Pollution Control Agency(MPCA)to address PFAS impacts MPCA considering multiple technologies and treatment train alternatives Specifically considering technologies that may reduce filtration mediaPossible Treatment Train Surface Active Foam Fractionation(SAFF)one
3、 possible technology SAFFcould be used as a standalone technology or as pretreatment to filtration to reduce costs Pilot study focused on SAFFPre-Treatment followed by destruction of concentrateSAFF Pre-TreatmentGAC/IX PolishingPFAS Impacted Surface Water and GroundwaterDisposal or DestructionSecond
4、ary FractionateSAFF EffluentClean Water for Distribution,Injection,or DischargeSpent MediaSurface Active Foam Fractionation(SAFF)1.Inject air into water2.PFAS foams3.Remove foamPilot study used a SAFF20 from EPOCNo surfactants usedSAFF:Two Stages ProcessPrimary Fractionation Goal:Minimize PFAS conce
5、ntration in effluentSecondary FractionationGoal:Minimize volume of PFAS concentrate prior to destruction or disposalFoam and top layer of water flow over cone and captured in top hoodInjected air bubbles promote foam formationPFAS foam vacuumed offInjected air bubbles promote foam formation and carr
6、y PFAS upwardWater SourcesSite selected because of access to impacted surface water and impacted aquifersRaleigh CreekShakopee Aquifer Monitoring WellFoam readily forms on Raleigh CreekPFOSPFOATotal Organic CarbonRaleigh Creek2,000-3,000 ng/L700-900 ng/L6.5 mg/LShakopee Aquifer950 ng/L330 ng/L0.5 mg
7、/LJordan Aquifer1 ng/L22 ng/L0.5 mg/LRaleigh Creek TreatmentFoam formed during primary fractionationLonger treatment time results in higher percent removal but less water treated per dayPFOS Percent Removal PFOA Percent RemovalPFOS Effluent ConcentrationPFOA Effluent Concentration0510152025303540909
8、294969810018203050Effluent(ng/L)Percent RemovalBatch Treatment Time(min)Gallons Per Day Treated(48,000)(45,000)(35,000)(24,000)Raleigh Creek Optimized Results Removal observed to be variable with changes in flow and PFAS concentrations PFOS:1.8-5 ng/L PFOA:2-4 ng/LPFASInfluent (ng/L)Effluent(ng/L)Pe
9、rcent RemovalSurface Water Quality Criteria(ng/L)PFBA303175425,700PFHxA51.52257220PFOA5152.129925PFBS18.48.0856140PFHxS41.11.699620PFOS15701.8990.05Met criteriaExceeded criteriaShakopee Aquifer Treatment Tested conditions to improve efficiency:Higher air injection Addition of clean water to push PFA
10、S out of top cone Dosing with PFAS concentrate Oscillating between high and low air injection Able to achieved over 99%removal of PFOS and PFOA with oscillation method Removal by bubble fractionationNo foam observed during primary fractionationShakopee Aquifer Treatment0102030408085909510025305070Ef
11、fluent(ng/L)Removal EfficiencyBatch Treatment Time(min)(Gallons Per Day Treated)Varying Treatment Length(40,000)(35,000)(25,000)(19,000)PFOS Percent Removal PFOA Percent RemovalPFOS Effluent ConcentrationPFOA Effluent ConcentrationShakopee Aquifer:Optimized Results Variations observed in long term s
12、tudy PFOS:2 to 5 ng/L PFOA:ND to 7 ng/L Adjustment of settings results in decreased PFOS effluent concentration but increased PFOA effluent concentrationPFAS AnalyteInfluent Concentration(ng/L)Effluent Concentration(ng/L)Percent Removal MDH HBV/HRL(ng/L)PFBA3723612.967,000PFHxA44.336.118.51200PFOA28
13、199.680.0079PFNA2.1258.16PFBS15.413.512.34100PFHxS34.11.6295.2547PFOS9392.6799.22.3Low foaming water can be effectively treated with SAFFMDH:Minnesota Department of HealthHBV:Health Based ValueHRL:Health Risk LimitJordan Aquifer:Optimized ResultsPFAS AnalyteInfluent Concentration(ng/L)Effluent Conce
14、ntration(ng/L)Percent Removal HBV/HRL(ng/L)PFBA39239107,000PFHxA6.355.848200PFOA26.54.95810.0079PFHxS0.7914947PFOS0.92562.3PFAS removal occurs with low concentrations but less effectiveOptimizing Secondary Fractionation:Concentration Factor ComparisonInfluent(30,000-40,000 gpd)Primary Concentrate(70
15、0-1,300 gpd)Raleigh CreekPFOA:24 ug/L(27X)PFOS:72 ug/L(29X)Shakopee AquiferPFOA:11 ug/L(34X)PFOS:35 ug/L(36X)Raleigh CreekPFOA:0.9 ug/L PFOS:2.5 ug/L Shakopee AquiferPFOA:0.33 ug/LPFOS:0.95 ug/LSecondary Concentrate(0.5 gpd)Raleigh CreekPFOA:9,020 ug/L(10,000 X)PFOS:19,100 ug/L(8,000X)Shakopee Aquif
16、erPFOA:6360 ug/L(20,000 X)PFOS:19100 ug/L(21,000 X)SAFF Lessons Learned Effective removal and concentration of PFAS even when foam is not formed Polishing may be required to achieve treatment objectives Rapid Small Scale Column Studies in progress to determine media savings Air emissions control is
17、needed as some PFAS is likely being aerosolized Operations and maintenance will be simplified when the system is no longer in a shipping containerBench Scale Testing of Destruction Technologies with SAFF ConcentrateInitial field demonstration with DE-FLUORO because of ability to rapidly deployPlasma
18、Onvector(Plasma Vortex)PhotochemicalClaros(Elemental)Enspired(PFASigator)Supercritical Water Oxidation374 Water(AirSCWO)General Atomics(iSCWO)Revive Environmental(PFAS Annihilator)Electrochemical OxidationAxineDE-FLUORO(Pike)Field Demonstration of Electrochemical OxidationPFAS Impacted Groundwater(3
19、0,000-40,000 gpd)PFAS Concentrate0.5 gpdClean WaterDischarged to Surface WaterSurface Active Foam FractionationEO DestructionRecirculated Effluent17Destruction by Electrochemical OxidationCurrent applied across anode-cathode pairDirect oxidation as electrons are transferred from PFAS via direct cont
20、act at the anodeAdditional advanced oxidation mediated by hydroxyl radicals generated in reactorElectron transfer sequentially defluorinatesPFAS leading to complete mineralization(formation of carbon dioxide and fluoride)Transitioned early on to reactive electrochemical membrane(REM)electrodesHigh s
21、urface area,durable,flow-through operation,commercially available Proof of concept began at bench-scaleDE-FLUOROTM Field Deployment Bench-scale testing&analysis at Testing Facility Prompt data fordecision makingPREDICTION Demonstration program-On or Offsite Informs design of a full-scale treatment p
22、rogramCONFIRMATION Customized system deployment to meet treatment objectives Turn-key destructionsolution Lease,operation&maintenanceplans availableDESTRUCTIONApplication for this projectPFAS Concentrate from SAFFPFOAPFOSPFHxSTotal PFASTOFNanograms per liter(ng/L)Shakopee Aquifer Groundwater 2819393
23、4.12,2542,100SAFF Concentrate 1100,000474,0006,420595,929580,000SAFF Concentrate 2110,000436,0006,390562,164490,000SAFF PFAS ConcentrateTOF:Total OrganofluorineDE-FLUOROTMSelf-Contained System-Process FlowRecirculation FilterScrubberGACEmission ControlsMulti-Electrode ReactorFluid Holding TankConden
24、sate TrapSampling PortCondensate TrapEffluent PortGAC:Granular Activated CarbonDemonstration Control ParametersField optimization of following parameters:Air flow rate across holding tank Electrode current pH and electrolyte additives-feed rates and locations TemperatureResults inform full-scale imp
25、lementationProcess Optimization:PFAS ReductionTOF:Total organofluorineTOF Used to Evaluated Fate of PFASRecirculation FilterScrubberGACEmission ControlsMulti-Electrode ReactorFluid Holding TankCondensate TrapSampling PortCondensate TrapEffluent PortGAC:Granular Activated CarbonTOFPercentageInitial10
26、0%Components13%Effluent6%Balance81%Total Organofluorine by Method MLA-119Accounting for TOF demonstrates destruction effectivenessSystem elements are monitored0.3%0.1%0.1%3%6%3%6%EO Lessons Learned:Air Emission SystemOptimization Managed emissions of H2and HF Controlled aerosolization of PFAS In air
27、 emission system GAC and scrubber:Experiment 1:6%of initial total PFAS Experiment 2:3.5%of initial total PFASAerosolization can be minimized through operational settings25Fluid Holding TankEO Lessons Learned:Foam If foam is not dissipated,effluent concentrations do not reflect destruction In practic
28、e we incorporated foam management and controlsMinimizing foam ensures PFAS are being destroyed and not transferred into foam26EO Lessons Learned:Closed Loop Operation Optimizes performance Controls by-products Reduces overall energy consumption by limiting destruction within optimal range PFAS waste
29、 does not leave the site(reducing liability)Closed loop treatment train enables flexibility in PFAS treatment optimization27DestroySeparateConcentrateNext Steps Evaluate SAFF performance with other feedwaters Different location at Site Reverse osmosis reject water Determine savings in GAC and IX med
30、ia to achieve treatment goals with use of SAFF Compare EO to other PFAS destruction technologies New field demonstration at a different site with SAFF+improved EO is planned for Winter 202428AcknowledgementsProject TeamLaura LewisDaryl Beck,PEGeoff GoodwinRebecca Higgins,PGDrew TararaAndrew WilcoxMP
31、CAAndri Dahlmeier EPOCJon HefferNaresh IsidorePeter MurphyDE-FLUORO TeamRebecca MoraRosa Gwinn,PhDFrancisco Barajas,PhDRachel CassonHyunshik Chang,PhD PEKeith MaxfieldLucy PughGavin SchererBrett WendelTHANK YOU!Hanna Temme()Laura Lewis()Rebecca Mora()Poster:“Piloting Foam Fractionation on an RO Conc
32、entrate Stream as part of Ovivos Integrated Solution for Onsite PFAS Destruction with Electro-oxidation”West Morgan-East Lawrence Water&Sewer AuthorityTom WhittonBusiness Development ManagerPFAS Solutions Product GroupOvivoTom.W+1(514)601-1316TESTWATERDESCRIPTIOTESTWATERDESCRIPTIOTest Methods1.Evalu
33、atethe effectiveness ofadvancedengineeredGACs forPFAS adsorption.2.Drawthermodynamic/adsorptionbehavioraltie linesandidentify factors that disrupt tie linesbetween GAC adsorption performance inequilibriumisothermsandRapid SmallScale ColumnTests(RSSCT)s.3.Identify key activated carbonproperties contr
34、ibutingto leadingadsorptionmechanismsEnhanced PFAS Removal with Advanced Granular Activated Carbons(GACs)MicalaMitchek,ArielLi,Joe Wong|Arq IncBahareh Tajdini,ChrisBellona|Colorado Schoolof MinesContact:ObjectivesTunning Reagglomerated Bituminous GAC PropertiesOtherTestConditionsWaterMatrix(s)TestRS
35、SCTdesignedusingconstantdiffusivitytosimulate10-minuteEmptyBedContactTime(EBCT)SpikedCityofGoldenColorado tapwater(0.9ppmTOC)spikedto equimolarconcentrations ofeachPFASat100pptRSSCTEquilibriumforeachwater used7-daycontacttimeSpikedCityofGoldenColorado tapwater(0.9ppmTOC)spikedto equimolarconcentrati
36、ons ofeachPFASat100pptandat1000pptEquilibriumAdsorption measuredatcontacttimesrangingfrom5minutesto7daysSpikedCityofGoldenColorado tapwater(0.9ppmTOC)spikedto equimolarconcentrations ofeachPFASat100pptKineticMCL or HI(ppt)PFAS2000*PFBS10PFHxS4PFOSN/APFPeAN/APFHxA4PFOA10PFNAMaximumContaminantLevel(MC
37、L)*HealthIndex(HI)sum1forof4PFASArqCarbPureRG1240Generation1-12X40GACProducedfrompurifiedbituminouscoalwasteArqCarbPureRG830Generation1-8X30GACProducedfrompurifiedbituminouscoalwasteArqCarbPureRG1240BLGeneration2-12X40GACProducedfrompurifiedbituminouscoalwastewithenhancedsurfacecharacterfortargeting
38、PFASArqCarbPureRG1240+Generation2-12X40GACProducedfrompurifiedbituminouscoalwastewithenhancedporecharacterfortargetingPFASGranulesTGAwtloss400-750C(wt%)(lowwtlossindicateslowsurfacefunctionalgroups)Ash(drywt%)SlurrypH(highpHindicatesnetpositivesurfacecharge)TransportPoreVolume(20-150)(cc/g)(vol%)Seq
39、uestrationPoreVolume(0-20)(cc/g)(vol%)TotalPoreVolume(0-500)(cc/g)IodineNumber(mg/g)ApparentDensity(g/mL)DESCRIPTION0.645.710.30.05(11%)0.37(80%)0.468370.59IndustryBit.12400.6110.111.00.12(22%)0.36(67%)0.519130.47ArqCarbPure8300.4612.710.80.19(31%)0.39(63%)0.6210340.51ArqCarbPure12400.6512.510.70.15
40、(23%)0.43(67%)0.6410980.50ArqCarbPure1240+16.011.90.09(22%)0.27(66%)0.417260.41ArqCarbPure1240 BLEnhanced PFAS Removal in Rapid Small Scale Column Test ResultsPFNAPFOAPFHxAPFPeAPFOSPFHxSPFBSPFAS102106108104969896AverageInfluent,ppt10%4%N/AN/A4%10%N/A%BreakthroughatMCLBedVolumesTreatedatMaxContaminan
41、tLevel(MCL)(ImprovementoverIndustryBituminous)IodineNumberGAC3,4002,000-2,6003,400-837IndustryBituminous12407,800(2.3X)2,000(1.0X)-6,200(2.4X)7,600(2.2X)-995ArqCarbPureGAC124015,400(4.5X)8,400(4.2X)-11,600(4.5X)15,000(4.4X)-883ArqCarbPureGAC83035,000(10.3)19,200(9.6X)-23,000(8.9X)38,400(11X)-1098Arq
42、CarbPureGAC1240+10,000(2.9X)5,200(2.6X)-9,000(3.5X)10,000(2.9X)-726ArqCarbPureGAC1240BLPFNAPFOAPFHxAPFPeAPFOSPFHxSPFBSPFAS102106108104969896AverageInfluent,ppt50%50%50%50%50%50%50%BreakthroughatMCLBedVolumesTreatedat50%Breakthrough(ImprovementoverIndustryBituminous)IodineNumberGAC32,00017,00016,0005
43、,00058,00038,00025,000837IndustryBituminous124052,000(1.6X)42,000(2.5X)25,000(1.6X)8,000(1.6X)62,000(1.1X)60,000(1.6X)49,000(2.0X)995ArqCarbPureGAC124083,000(2.6X)52,000(3.1X)31,000(1.9X)19,000(3.8X)120,000(2.1X)101,000(2.7X)40,000(1.6X)883ArqCarbPureGAC830103,000(3.2X)68,000(4.0X)39,000(2.4X)26,000
44、(5.2X)135,000(2.3X)109,000(2.9X)65,000(2.6X)1098ArqCarbPureGAC1240+49,000(1.5X)37,000(2.2X)25,000(1.5X)10,000(2.0X)67,000(1.2X)50,000(1.3X)30,000(1.2X)726ArqCarbPureGAC1240BLArqCarbPureRG1240BLArqCarbPureRG1240Industry BituminousArqCarbPureRG830ArqCarbPureRG1240+Adsorption Kinetics1.Surface,pore,and
45、 particlepropertiesof reagglomerated bituminousGACs canbe tunedto enhancePFAS removal capacity andadsorptionrate.2.Equilibriumadsorptioncapacitiesindicatethatcolumn adsorptiondoesnt approachequilibriumentitlementleaving significantroomto improvekinetic adsorptionperformance.3.MechanismsimpactingGAC
46、adsorptionperformance:1.)Equilibriumadsorptioncapacity2.)Adsorptionkinetics3.)Adsorptionselectivity4.)Competitiveadsorption(contaminantsand natural organic matter)Key FindingsTuning particle,pore,and surface properties of reagglomeratedbituminous GACs can increase the volume of water treated for PFO
47、A byup to 10X at the 4 ppt MCL and up to 4X at 50%breakthroughRSSCTEquilibriumRSSCTEquilibriumTestSimulated10minEBCT1wkSimulated10minEBCT1wkContacttime10010044PerformanceEvaluationConcentration,ppt9.1750.42.7IndustryBituminousAdsorbedCapacity(ugPFOA/g)16.0814.13.5CarbPureGAC1240+1.01.01.01.0Industry
48、BituminousPerformanceFactor(wtCarbPure1240+/wtindustrybituminousneededtoachieveperformanceevaluationconc.)0.60.90.10.8CarbPureGAC1240+Isothermcomparisonsatbothfullutilization(100ppt)andinitialbreakthrough(4ppt)overpredictadsorptioncapacityinRSSCT PropertiesofCarbPureGAC1240+(enhancedtransportporesan
49、d/orsurfacecharacteristics)leadtomoderateperformanceenhancementsinisothermtesting(10-20%)butsignificantperformanceenhancementsinRSSCT(40-90%)Opportunitytoovercomeinefficiencies inRSSCTsthatarepreventingachievingequilibriumEnhancementinadsorptionkineticsdoesntfullyaccountforRSSCTperformanceenhancementExploringhowtoutilizeimprovedadsorptionkineticsEquilibrium Adsorption CapacityWater Treated at50%BreakthroughWater Treated atMCL Breakthrough4PPTMaximumContaminantLevel10X4X1.7Xincreaseincapacityat1.5hrcontacttime