Energy Aware Runtime (EAR) 能否成為歐洲 AI HPC 數據中心能源優化的賭注?.pdf

編號:158231 PDF 12頁 1.08MB 下載積分:VIP專享
下載報告請您先登錄!

Energy Aware Runtime (EAR) 能否成為歐洲 AI HPC 數據中心能源優化的賭注?.pdf

1、OCP Regional Summit|April 19,2023|Prague,CZCould Energy Aware Runtime(EAR)be the European bet for AI/HPC Data Centerenergy optimization?Julita Corbalan,Associated professor,Barcelona Supercomputing Center(BSC)/Polytechnic University of Catalonia(UPC)Why energy management?Be cost-effective:Operationa

2、l costsBe eco-responsible:Limited resourcesBe energy-efficient:Understand and optimizeSystem software for Energy management in HPC/AI Data CentersEAR includesSystem monitoringJob accountingJob optimizationSystem optimizationEAR targets energy/power but includes many other metrics for understandingWh

3、ats EARMain EAR featuresJob/SystemoptimizationJob accountingand dynamicmonitoringSystemmonitoring Extensible monitoring:Power,CPU frequency,temperature,etc Multiple sources of data:inband IPMI,GPU,RAPL Intel,AMD,NVIDIA Extensible report:MariaDB,Postgres,Sysfs,Prometheus(wip)Basic alerts for power an

4、d temperature Powerful non-intrusive application monitoring and characterization Runtime signatures:Performance and Power metrics CPI,GB/s,Power,Frequency Dynamic CPU/Memory/GPU frequency optimization Node and cluster powercapJob energy optimization processLoop detection/Time guidedRuntime signature

5、computationClasificationApply energypolicies and modelsCPU/Memory/GPU frequencyselectionReport runtimesignaturesbatch myapp.shSpecificFrequencysettingsIOGPU boundGPU idleCPU busy waitingCPU-GPUcomputational100%runtimeNo application modificationsPerformance and power metrics for energy/performance an

6、alysis and optimizationTimePower Node,DRAM,CPU,GPUFrequency:CPU,Memory,GPU Cycles per InstructionsMemory bandwidth(GB/sec)GPU activity:Utilization,Memory utilizationIO MB/secMPI activityRuntime signature includesSystem power/energy controlHierarchical architectureState-less designget_power/send_sett

7、ings APILow-level knobs based on pluginsSystem,Workload and Job Analysis with EARJob Data visualizationEAR is an European Open Source solution for Energy management in HPC/AI Data centersEAR4.2 last public release Our roadmap includesBe as much extensible and compatible with other tools as possible:optimization libraries,schedulers,monitoring systems,etcMore architectures(working in ARM)More use cases(workflows)Still lot of work to do,from software side,to become energy-efficient data centers!Do you want to know more,join the technical demo!SummaryOCP Regional Summit|April 19,2023|Prague,CZ

友情提示

1、下載報告失敗解決辦法
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站報告下載后的文檔和圖紙-無水印,預覽文檔經過壓縮,下載后原文更清晰。

本文(Energy Aware Runtime (EAR) 能否成為歐洲 AI HPC 數據中心能源優化的賭注?.pdf)為本站 (張5G) 主動上傳,三個皮匠報告文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。 若此文所含內容侵犯了您的版權或隱私,請立即通知三個皮匠報告文庫(點擊聯系客服),我們立即給予刪除!

溫馨提示:如果因為網速或其他原因下載失敗請重新下載,重復下載不扣分。
客服
商務合作
小程序
服務號
折疊
午夜网日韩中文字幕,日韩Av中文字幕久久,亚洲中文字幕在线一区二区,最新中文字幕在线视频网站