《SESSION 35 Implantable and Wearable Biomedical Devices.pdf》由會員分享,可在線閱讀,更多相關《SESSION 35 Implantable and Wearable Biomedical Devices.pdf(523頁珍藏版)》請在三個皮匠報告上搜索。
1、ISSCC 2025SESSION 35 Implantable and Wearable Biomedical Devices35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference1 of 44A Single-Inductor-Based High-Voltage Transmit B
2、eamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction Peng Guo,Zu-Yao Chang,Michiel A.P.Pertijs,Tiago L.Costa 35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circui
3、ts Conference2 of 44OutlineIntroductionArchitectureCircuit ImplementationMeasurement ResultsConclusion35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference3 of 44Introduct
4、ion35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference4 of 44Ultrasonic Vagus Nerve Stimulation35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable
5、 Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference5 of 44TX Beamforming35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits
6、 Conference6 of 44Focused Ultrasound35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference7 of 44Optical Fresnel Lens35.1:A Single-Inductor-Based High-Voltage Transmit Beam
7、former for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference8 of 44Fresnel TX Beamforming35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE Interna
8、tional Solid-State Circuits Conference9 of 44Delay quantization35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference10 of 44MUT technologyCMOS Compatible35.1:A Single-Indu
9、ctor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference11 of 44Prior publicationsCMUT Seok,TBCAS21PMUT Ding,MEMS21CMUT Seok,TBCAS21PMUT Zhou,JMEMS2335.1:A Single-Inductor-Based High-Voltage T
10、ransmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference12 of 44fCV2Power LossState-of-the-art CMUT/PMUT35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Po
11、wer Reduction 2025 IEEE International Solid-State Circuits Conference13 of 44Power-efficient TX designGourdouparis,ISSCC2435.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Confer
12、ence14 of 44Power-efficient TX designChoi,ISSCC2135.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference15 of 44Challenge Low Density Low Q Bulky PackageKai,JSSC19On-chip in
13、ductorOff-chip inductor35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference16 of 44ChallengeWild Wild West(1999)35.1:A Single-Inductor-Based High-Voltage Transmit Beamfor
14、mer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference17 of 44OutlineIntroductionArchitectureCircuit ImplementationMeasurement ResultsConclusion35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound
15、Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference18 of 44LC resonator35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference19
16、 of 44Switched-inductor operation35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference20 of 44Switched-inductor operation35.1:A Single-Inductor-Based High-Voltage Transmit
17、 Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference21 of 44Switched-inductor operation35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 I
18、EEE International Solid-State Circuits Conference22 of 44Switched-inductor operation35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference23 of 44Switched-inductor operatio
19、n35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference24 of 44Switched-inductor operation35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultraso
20、und Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference25 of 44Switched-inductor operation35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Ci
21、rcuits Conference26 of 44Non-uniform delay quantization35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference27 of 44Non-uniform delay quantizationFocal Depth(mm)Focal Dept
22、h(mm)35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference28 of 44OutlineIntroductionArchitectureCircuit ImplementationMeasurement ResultsConclusion35.1:A Single-Inductor-
23、Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference29 of 44Resonating period control35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%f
24、CV2Power Reduction 2025 IEEE International Solid-State Circuits Conference30 of 44Resonating period control35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference31 of 44Res
25、onating period control35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference32 of 44Resonating period controlWider35.1:A Single-Inductor-Based High-Voltage Transmit Beamfor
26、mer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference33 of 44Resonating period controlWider35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE I
27、nternational Solid-State Circuits Conference34 of 44OutlineIntroductionPrototype ArchitectureCircuit ImplementationMeasurement ResultsConclusion35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid
28、-State Circuits Conference35 of 44MicrographInd.QRacSMT1.1H351.6Planar1.1H321.735.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference36 of 44Resonating PWM ControlPulserOut
29、put35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference37 of 44Phase delay35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Ac
30、hieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference38 of 44Acoustic Beamforming35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference39 o
31、f 44fCV2Power Reduction Load with 120-pF capacitor35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference40 of 44fCV2Power ReductionLoad with 1-D CMUT array35.1:A Single-Ind
32、uctor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference41 of 44ComparisonThis workISSCC24JSSC13JSSC21ESSCIRC21 ISSCC21JSSC24Process180n BCD65n180n HV180n180n BCD180n BCD180n BCDTransducerCMU
33、TPMUTCMUTPMUTPMUTPZTCMUTChannel3216436411Load cap120pF2.5pF40pF15.4pF235pF820pF120pFTX beam-formingYesYesNoNoNoNoNoTX voltage36V4.8V30V13.2V32V30V30VOperating frequency2M7.8M3.3M5M250k1M2.5MfCV2power reduction88.2%69%38%42.2%80%73.1%76.8%35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer
34、for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference42 of 44OutlineIntroductionPrototype ArchitectureCircuit ImplementationMeasurement ResultsConclusion35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultra
35、sound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference43 of 44Conclusion A single inductor shared among delay groups Non-uniform delay quantization for equal group size Energy resonates only between parasitic capacitors All lead to a power-efficient/co
36、mpact transmit beamformer Pave the way for MUT-based ultrasound transducers 35.1:A Single-Inductor-Based High-Voltage Transmit Beamformer for Wearable Ultrasound Devices Achieving 88%fCV2Power Reduction 2025 IEEE International Solid-State Circuits Conference44 of 44Thanks for your attention35.2:A Sp
37、atial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference1 of 59A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADCHuan-Cheng Liao*,Shunyao Zhang*,Yumin Su,Arvind Govinday,Yiwei
38、Zou,Wei Wang,Vivek Boominathan,Ashok Veeraraghavan,Lei Li,Kaiyuan YangRice University,Houston,TX*Equally Credited Authors35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference2 of 59Deep-Tissue Imaging Me
39、dical ApplicationsMusculoskeletal monitoringCardiovascular monitoringH.Hu,Nat.23V.C.Protopappas,TBME05Fetal development trackingD.Ryu,PNAS2135.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference3 of 59Bio
40、medical Imaging Methods Reveal molecular contrast Limited penetration(2mm)OpticalIncident light source(Laser,LED,etc.)Optical receiverLight inLight out35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conferenc
41、e4 of 59Biomedical Imaging Methods Reveal molecular contrast Limited penetration(300Mbps Wearable imaging offers real-time,continuous,and long-term imaging Image generated by Google Gemini35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE Interna
42、tional Solid-State Circuits Conference12 of 59PA/Ultrasound RX Prior Works.AFEAFEADCADC.Fs=FNyquist Access to raw data of full array One ADC per input channel High output data rate High output channel count One ADC per channelJ.Li,VLSI1935.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager
43、with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference13 of 59PA/Ultrasound RX Prior Works.AFEAFEADCADC.Fs FNyquistFIFODigital BF*BF:BeamformerDigital/Analog BeamformingM.-C.Chen,JSSC17 Lose access to raw data of full array Reduce output channel counts Tradeoff betwe
44、en image quality and data rate.AFEAFEADCFs=FNyquistAnalog BFY.Hopf,ISSCC2235.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference14 of 59PA/Ultrasound RX Prior Works.AFEAFEADCADC.Fs FNyquistFIFODigital BF*
45、BF:BeamformerM.-C.Chen,JSSC17.AFEAFEADCFs=FNyquistAnalog BFY.Hopf,ISSCC22Break the tradeoff by adopting compressive sensing!Digital/Analog Beamforming35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference
46、15 of 59Compressive Sensing(CS)RX Prior Works PRBSInputADCFs FNyquistLNAInputCS SAR ADC.PRBSW.Guo,JSSC17J.Yoo,RFIC12 Compression in the time domain Reduce output data rate Require one or more ADC per channelNot suitable for PA/ultrasound image35.2:A Spatial-Domain Compressive-Sensing Photoacoustic I
47、mager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference16 of 59Compressive Sensing(CS)RX Prior WorksPRBSInputADCLNAM.Shoaran,TBioCAS14 Compression in the spatial domain Reduce output data rate Support general sensing matrix Multiple channels share one ADC Power-
48、and area-consuming MAC35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference17 of 59Outline Motivation System Overview Circuit Implementation Measurement Results Conclusion35.2:A Spatial-Domain Compressiv
49、e-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference18 of 59This Work:CS Photoacoustic ImagerImageTransducerSignal ReconstructionUniversal backpropagationASIC.Q(ANMXM1)=YN1XM1.AFEMVM SAR ADCexample input waveform1st MethodFISTA2nd Met
50、hodINR-based.Image Reconstructionf(YN1)=XM1XM1 to image35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference19 of 59Transducer.XM1example input waveformM transducersUltrasound Transducer Input signals of
51、 M transducers are denoted as XM1 3.5MHz center frequency with 1mm pitch35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference20 of 59TransducerASIC.Q(ANMXM1)=YN1XM1.AFEMVM SAR ADCexample input waveform.M
52、 transducersYN1Photoacoustic RX ASIC ANM is a sensing matrix set by users Find the PCA of the uncompressed image to design the matrix Specially designed matrix for a more general case35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE Internationa
53、l Solid-State Circuits Conference21 of 59TransducerASIC.Q(ANMXM1)=YN1XM1.AFEMVM SAR ADCexample input waveform.M transducersYN1Photoacoustic RX ASIC Implement CS on hardware to output digital data YN1 Lower the data rate by M/N times Achieve better hardware power-and area-efficiency35.2:A Spatial-Dom
54、ain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference22 of 59ImageTransducerSignal ReconstructionUniversal backpropagationASIC.Q(ANMXM1)=YN1XM1.AFEMVM SAR ADCexample input waveform1st MethodFISTA2nd MethodINR-based.Image
55、Reconstructionf(YN1)=XM1XM1 to imageM transducersYN1Backend Process for Image Reconstruction Backend process to reconstruct the image using compressed YN1Backend Process35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State
56、Circuits Conference23 of 59Signal Reconstruction(FISTA)=(1)()=W:wavelet transform matrix Transform into wavelet domain35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference24 of 59Signal Reconstruction(FI
57、STA)A.Beck,SIAM Journal on imaging sciences 09 Apply L1 regularization to solve for Fast Iterative Shrinkage-Thresholding Algorithm(FISTA)+1=+(1+1)(1)=()=.+1=1 1+422=(1)()=W:wavelet transform matrix Transform into wavelet domain35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matr
58、ix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference25 of 59Signal Reconstruction(INR)Transducer index(M)Time index(T)Siren Implicit Neural RepresentationPredicted Transducer Signal(XMT)Time(T)Transducer(M)35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with
59、Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference26 of 59Compute LossTransducer index(M)Time index(T)Siren Implicit Neural RepresentationPredicted Transducer Signal(XMT)Uncompressed Transducer Signal(XMT)Transducer(M)Time(T)Time(T)Transducer(M)Compress(ANMXMT)Measure
60、d Compressed Signal(YNT)Time(T)Transducer(N)Backpropagate LossYNT=AXMTL=MAE(YNT,YNT)V.Sitzmann,NeurIPS,20Signal Reconstruction(INR)35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference27 of 59Universal b
61、ack propagationL.V.Wang,Biomedical optics:principles and imaging,07TransducerReceived signalReceived signal(time)Image(distance)transducer locationspeed of soundImage Reconstruction35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International
62、Solid-State Circuits Conference28 of 59Outline Motivation System Overview Circuit Implementation Measurement Results Conclusion35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference29 of 59ASIC OverviewLN
63、APGALPFMVM SAR ADCChannel 14x4x4x4 Transducer Array.Clock(245MHz)4 Data OutputsLVDS TransmitterSystem ControllerAVDD(1.2V)AFEScan ChainEncoder/SerializerPGA Gain&LDO SettingsCompressing MatrixSettingsLDO.16xLVDS Receiver M=16,N=14 in this work as a proof of concept35.2:A Spatial-Domain Compressive-S
64、ensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference30 of 59Low Noise Amplifier Closed-loop capacitive coupled amplifierINVFrom TransducerTo PGA35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR AD
65、C 2025 IEEE International Solid-State Circuits Conference31 of 59INVFrom TransducerTo PGAInputOutputVLDO(=0.9V)1st stage2nd stageLow Noise Amplifier Closed-loop capacitive coupled amplifier Inverter-based amplifier with 1/gm loading Robust gain and phase margin without additional biasTemperature:206
66、0 Supply:0.9V5%55606570MeanMagnitude(dB)MinMaxTTFFSSFSSFOpen-loop gainPhase margin55606570TTFFSSFSSFDegree35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference32 of 59INVFrom TransducerTo PGAInputOutputV
67、LDO(=0.9V)1st stage6:113:12nd stage5:15:1Low Noise Amplifier Closed-loop capacitive coupled amplifier Inverter-based amplifier with 1/gm loading Robust gain and phase margin without additional biasing High-Vth NMOS for low flicker noise35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager w
68、ith Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference33 of 59LNAPGALPFChannel 14xAVDD(1.2V)LDO16xLow Noise Amplifier Closed-loop capacitive coupled amplifier Inverter-based amplifier with 1/gm loading Robust gain and phase margin without additional biasing High-Vth N
69、MOS for low flicker noise 4 channels share one LDO for better PSR35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference34 of 59Analog Front EndLNA OutputTo LPFPGATo ADCPGA OutputLPFLNAPGALPFChannel 14xAVD
70、D(1.2V)LDO16x35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference35 of 59Analog Domain Matrix-Vector Multiplication 16 input signals from AFEs Ternary weight(1,0)4 digital output channelsDesired Operati
71、on:416 161=41XA=1 or 0 or-1.AAAAAAAA.X1.X2X15X16AAAAAAAAOutputs of AFEsY1Y2Y3Y4Outputs of ADCs=35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference36 of 59XA=1 or 0 or-1.AAAAAAAA.X1.X2X15X16AAAAAAAAOutp
72、uts of AFEsY1Y2Y3Y4Outputs of ADCs=Control for 1st ADC2nd ADC3rd ADC4th ADCOutput of 1st ADC2nd 3rd 4thAnalog Domain Matrix-Vector Multiplication Achieved by four Matrix-Vector Multiplying SAR ADCsDesired Operation:416 161=41MVM SAR ADCAnalog InputWeight(A)(X116)Digital Output(Y1)35.2:A Spatial-Doma
73、in Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference37 of 59Sampling phaseConversion phasesCLKC.Matrix-Vector Multiplying(MVM)SAR ADCMVM SAR ADCAnalog InputWeight(A)(X116)Digital Output(Y1)SAR Logic10bVrefpVrefnVcmADC Out
74、putVcmCDACX116,pVrefpVrefnVcmVcmCLKCsX116,n35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference38 of 59Vcm64C64C64C64CVcmSAR LogicCLKC64C64CAX16,pX16,nAX15,pX15,nAX14,pX14,nAX3,pX3,nAX2,pX2,nAX1,pX1,nMV
75、M SAR ADC-Sampling Phase(Multiplication)Sampling phaseConversion phasesCLKC.Split CDAC into 16 equal-weight capacitorsDifferential outputs from LPFs with Vcm as inputsTernary weight(1 or 0)to select input sources35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying S
76、AR ADC 2025 IEEE International Solid-State Circuits Conference39 of 59MVM SAR ADC-Sampling Phase(Multiplication)Split CDAC into 16 equal-weight capacitorsDifferential outputs from LPFs with Vcm as inputsTernary weight(1 or 0)to select input sourcesSampling phaseConversion phasesCLKC.Vcm64C64C64C64CV
77、cmSAR LogicCLKC64C64CAX16,pX16,nAX15,pX15,nAX14,pX14,nAX3,pX3,nAX2,pX2,nAX1,pX1,n35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference40 of 59VcmCC256C512CVcmSAR LogicCLKC128C2CVrefpVrefnSampling phaseCo
78、nversion phasesCLKC.MVM SAR ADC-Conversion Phase(Accumulation)Charge sharing at the start of the conversion phaseCDAC splits into binary weight35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference41 of 5
79、9VcmCC256C512CVcmSAR LogicCLKC128C2CVrefpVrefnSampling phaseConversion phasesCLKC.MVM SAR ADC-Conversion Phase(Accumulation)Charge sharing at the start of the conversion phaseCDAC splits into binary weightSAR conversion35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multip
80、lying SAR ADC 2025 IEEE International Solid-State Circuits Conference42 of 59MVM SAR ADCFully passive,area-efficient MACSupport any ternary-weighted matrix multiplicationVcmCC256C512CVcmSAR LogicCLKC128C2CVrefpVrefn35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplyin
81、g SAR ADC 2025 IEEE International Solid-State Circuits Conference43 of 59Chip Micrograph 65nm LP CMOS RX area/CH:0.118 mm28-ch AFEController2 ADCTest structure2 ADC8 LNA2 LDO8 PGA8 LPF2940m1090m35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE I
82、nternational Solid-State Circuits Conference44 of 59Outline Motivation System Overview Circuit Implementation Measurement Results Conclusion35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference45 of 59Me
83、asured AFE AC Response&NoiseIRN(nVrms/Hz)1234567 833.544.55Frequency(MHz)AFE Input-Referred NoiseFrequency(Hz)30354045AFE Gain(dB)105106107PGA Gain Setting18dB12dB8.52dB6dBAFE AC Response35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE Internat
84、ional Solid-State Circuits Conference46 of 59Measured ADC Spectrum&DR-60-50-40-30-20-1000102030405060SNR/SNDR(dB)SNDRSNRDR=61.2dB-0.4-0.20565860Input Amplitude(dBFS)ADC Dynamic Range105Frequency(Hz)106107HD3 HD5Fs=20.41MHzFin=1.7MHzSFDR=67.96dBSNDR=57.51dB213 FFT Points-100-80-60-40-200Magnitude(dBF
85、S)ADC Spectrum35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference47 of 59Measured Computing Linearity-16-80816Wi-1-0.500.51Normalized ADC Output-14-0.682-0.68-0.678-0.676MaxMinMean+SD-SD8mVpp,R2=0.9999
86、964mVpp,R2=0.9999972mVpp,R2=0.9999981mVpp,R2=0.999991Output=(Wix Ij)=I x WiRandomly choose 50 combinations for each Wiif possibleNonlinearity includes AFE and ADC nonlinearity and channel mismatches35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IE
87、EE International Solid-State Circuits Conference48 of 59Normalized ADC Output-1-0.500.512468Input Amplitude(mVpp)Mean R2=0.99998Minimum R2=0.9999333 Wi-0.319-0.3164MinMax+SD-SDMeanMeasured Computing LinearityOutput=(Wix Ij)=I x WiRandomly choose 50 combinations for each Wiif possibleNonlinearity inc
88、ludes AFE and ADC nonlinearity and channel mismatches35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference49 of 59Phantom Imaging SetupTransducer ArrayPCBASICWater TankWaterLaserPlastic wrapPhantomConnec
89、torHandler&Moving stageTransducer Arrayzxy A 4-by-4 transducer moves along the y-axis to emulate a 24-by-4 array1stAcquisition244yx4-by-4 transducer array35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Confer
90、ence50 of 59Phantom Imaging SetupTransducer ArrayPCBASICWater TankWaterLaserPlastic wrapPhantomConnectorHandler&Moving stageTransducer Arrayzxy A 4-by-4 transducer moves along the y-axis to emulate a 24-by-4 array4thAcquisition244yx35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with
91、Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference51 of 59Phantom Imaging SetupLaserChip&TransducerPhantomPower supplyLight PathWavelength750nmAverage fluence1.9mJ/cm2Repetition rate20HzNumber of repetitions16Laser Setup35.2:A Spatial-Domain Compressive-Sensing Photoa
92、coustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference52 of 59Phantom Images with Uncompressed DataPhantomhairagaroseTop viewSide viewAmplitude(mV)94m0-94m051015202530Time(s)Laser start1st2nd3rd&4th5th Phantom Example of single-channel waveform35.2:A S
93、patial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference53 of 59Phantom Images with Uncompressed Data20 02405101522263034x(mm)z(mm)024y(mm)y(mm)10Three-view drawing3D viewxyz Reconstructed Image35.2:A Spatial-Domai
94、n Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference54 of 59Phantom Images with Compressed Data51015222630340240 2 4y(mm)z(mm)y(mm)x(mm)51015222630340240 2 4y(mm)x(mm)z(mm)y(mm)51015222630340240 2 4y(mm)x(mm)z(mm)y(mm)5101
95、5222630340240 2 4y(mm)z(mm)y(mm)51015222630340240 2 4y(mm)x(mm)z(mm)y(mm)51015222630340240 2 4y(mm)x(mm)z(mm)y(mm)FISTAINR-based4x compression16/3x compression8x compression35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-St
96、ate Circuits Conference55 of 59Phantom Images with Compressed DataHardware compressionSoftware emulated compression51015222630340240 2 4y(mm)x(mm)z(mm)y(mm)51015222630340240 2 4y(mm)z(mm)y(mm)x(mm)51015222630340240 2 4y(mm)x(mm)z(mm)y(mm)51015222630340240 2 4y(mm)x(mm)z(mm)y(mm)4x compression16/3x c
97、ompression35.2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference56 of 59Performance SummaryThis WorkISSCC17VLSI19ISSCC22JSSC24JSSC21Technology65nm28nm180nm180nm BCD180nm BCD180nmImaging ModalityPhotoacous
98、tic PhotoacousticUltrasoundUltrasoundUltrasoundUltrasoundTransducerPZTCMUTPZTPZTPZTPMUTTransducer Array4x44x44x48x916x166x6Center Frequency3.5MHz5MHz5MHz6MHz9MHz5MHzNyquist Sampling Rate20.41M20MHz30MHz24MHz40MHz20MHzInput-Referred Noise3.5nV/HzN/AN/AN/A0.7pA/Hz19.3nV/HzPeak SNDR57.51dB58.9dB49.8dB5
99、2.3dB*54dB59.4dBRX Area/CH0.118 mm2*0.065 mm20.023 mm20.0265 mm20.048 mm20.0625 mm2*RX Power/CH5.83mW*22.7mW1.54mW0.98mW1.83mW0.95mWOutput Data Reduction TechniqueCompressive SensingDigital BeamformingNoAnalog BeamformingAnalog BeamformingNo*Includes LDO*SNR instead of SNDR*Includes ultrasound TX35.
100、2:A Spatial-Domain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference57 of 59Performance SummaryThis WorkISSCC17VLSI19ISSCC22JSSC24JSSC21Technology65nm28nm180nm180nm BCD180nm BCD180nmImaging ModalityPhotoacoustic Photoacou
101、sticUltrasoundUltrasoundUltrasoundUltrasoundTransducerPZTCMUTPZTPZTPZTPMUTTransducer Array4x44x44x48x916x166x6Center Frequency3.5MHz5MHz5MHz6MHz9MHz5MHzNyquist Sampling Rate20.41M20MHz30MHz24MHz40MHz20MHzInput-Referred Noise3.5nV/HzN/AN/AN/A0.7pA/Hz19.3nV/HzPeak SNDR57.51dB58.9dB49.8dB52.3dB*54dB59.
102、4dBRX Area/CH0.118 mm2*0.065 mm20.023 mm20.0265 mm20.048 mm20.0625 mm2*RX Power/CH5.83mW*22.7mW1.54mW0.98mW1.83mW0.95mWOutput Data Reduction TechniqueCompressive SensingDigital BeamformingNoAnalog BeamformingAnalog BeamformingNo*Includes LDO*SNR instead of SNDR*Includes ultrasound TX35.2:A Spatial-D
103、omain Compressive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference58 of 59Performance SummaryThis WorkISSCC17VLSI19ISSCC22JSSC24JSSC21Technology65nm28nm180nm180nm BCD180nm BCD180nmImaging ModalityPhotoacoustic PhotoacousticUltrasoun
104、dUltrasoundUltrasoundUltrasoundTransducerPZTCMUTPZTPZTPZTPMUTTransducer Array4x44x44x48x916x166x6Center Frequency3.5MHz5MHz5MHz6MHz9MHz5MHzNyquist Sampling Rate20.41M20MHz30MHz24MHz40MHz20MHzInput-Referred Noise3.5nV/HzN/AN/AN/A0.7pA/Hz19.3nV/HzPeak SNDR57.51dB58.9dB49.8dB52.3dB*54dB59.4dBRX Area/CH
105、0.118 mm2*0.065 mm20.023 mm20.0265 mm20.048 mm20.0625 mm2*RX Power/CH5.83mW*22.7mW1.54mW0.98mW1.83mW0.95mWOutput Data Reduction TechniqueCompressive SensingDigital BeamformingNoAnalog BeamformingAnalog BeamformingNo*Includes LDO*SNR instead of SNDR*Includes ultrasound TX35.2:A Spatial-Domain Compres
106、sive-Sensing Photoacoustic Imager with Matrix-Multiplying SAR ADC 2025 IEEE International Solid-State Circuits Conference59 of 59Conclusion A spatial domain compressive-sensing photoacoustic imager-Demonstrate signal reconstruction using FISTA and INR-based methods-Reduce output data rate by at leas
107、t four times and up to eight times-Reduce the number of ADCs by four times Proposed Matrix-Vector Multiplying SAR ADC -Fully passive,energy-efficient,analog-domain MAC supporting ternary weight-Achieve excellent computing linearityA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy
108、IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference1 of 80A 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling Jiayang Li,Dai Jiang,
109、Yu Wu,Andreas DemosthenousUniversity College London(UCL)A 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference2 of 80OutlineBackground and MotivationBasics
110、of Bioimpedance SpectroscopyConventional Readout MethodTime-to-digital Readout MethodProposed Bioimepdance Spectropy ASICCo-prime Delay Locked SamplingHardware ImplementationMeasured ResultsSummary and ConclusionA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Di
111、gital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference3 of 80OutlineBackground and MotivationBasics of Bioimpedance SpectroscopyConventional Readout MethodTime-to-digital Readout MethodProposed Bioimepdance Spectropy ASICCo-prime Delay Locked S
112、amplingHardware ImplementationMeasured ResultsSummary and ConclusionA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference4 of 80Bioimpedance SpectroscopyRi
113、RmCmRmCmIntracellularReExtracellularCell MembraneIBio TissueIIVmA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference5 of 80Bioimpedance SpectroscopyRiRmCm
114、RmCmIntracellularReExtracellularCell MembraneIA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference6 of 80Bioimpedance SpectroscopyRiRmCmRmCmIntracellularR
115、eExtracellularCell MembraneIA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference7 of 80:0 10 kHzRiRmCmRmCmIntracellularReExtracellularCell MembraneIRiRmCm
116、RmCmIntracellularReExtracellularCell MembraneIA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference8 of 80:10 kHz 100 MHzRiRmCmRmCmIntracellularReExtracell
117、ularCell MembraneIRiRmCmRmCmIntracellularReExtracellularCell MembraneIRiRmCmRmCmIntracellularReExtracellularCell MembraneIA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State
118、 Circuits Conference9 of 80:GHz RangeRiRmCmRmCmIntracellularReExtracellularCell MembraneIRiRmCmRmCmIntracellularReExtracellularCell MembraneIRiRmCmRmCmIntracellularReExtracellularCell MembraneIRiRmCmRmCmIntracellularReExtracellularCell MembraneIA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance
119、 Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference10 of 80ApplicationsPlant Content AnalysisCancerDetectionBody Composition AnalysisFood QualityAssessmentUp to tens of MHzUp to 10-15 MHzUp to a few MHzUp to
120、a few MHzA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference11 of 80OutlineBackground and MotivationBasics of Bioimpedance SpectroscopyConventional Reado
121、ut MethodTime-to-digital Readout MethodProposed Bioimepdance Spectropy ASICCo-prime Delay Locked SamplingHardware ImplementationMeasured ResultsSummary and ConclusionA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked
122、Sampling 2025 IEEE International Solid-State Circuits Conference12 of 80State-of-art Bioimpedance ASICTBCAS19100 Hz 10 MHzJSSC2110 kHz 10 MHzISSCC241 kHz 200 kHzISSCC221 kHz 215 kHzA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prim
123、e Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference13 of 80State-of-art Bioimpedance ASICTBCAS19100 Hz 10 MHzJSSC2110 kHz 10 MHzISSCC241 kHz 200 kHzISSCC221 kHz 215 kHzAnalog I/Q DemodulationDigital I/Q DemodulationA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance S
124、pectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference14 of 80Analog I/Q DemodulationTBCAS19100 Hz 10 MHzJSSC2110 kHz 10 MHzISSCC241 kHz 200 kHzISSCC221 kHz 215 kHzAnalog I/Q DemodulationDigital I/Q DemodulationA
125、30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference15 of 80Analog I/Q DemodulationJSSC2110 kHz 10 MHzVisin(t)Vicos(t)LPF2 LPF1 M1M2IQZLADCIisin(t)IACurrent
126、 InjectingVoltage RecordingImpedancedataAnalog Domain9.6 mW/ChannelA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference16 of 80Challenges in Analog I/Q De
127、modulationJSSC2110 kHz 10 MHzVisin(t)Vicos(t)LPF2 LPF1 M1M2IQZLADCIisin(t)IACurrent InjectingVoltage RecordingImpedancedata4.3Phase Error at 10 MHz9.6 mW/ChannelA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampl
128、ing 2025 IEEE International Solid-State Circuits Conference17 of 80Digital I/Q DemodulationTBCAS19100 Hz 10 MHzJSSC2110 kHz 10 MHzISSCC241 kHz 200 kHzISSCC221 kHz 215 kHzAnalog I/Q demodulationDigital I/Q DemodulationA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-
129、to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference18 of 80Digital I/Q DemodulationTBCAS19100 Hz 10 MHzVisin(t)Vicos(t)LPF2 LPF1 M1M2IQZLADCImpedancedataIisin(t)IACurrent InjectingVoltage RecordingDigital Domain0.15Phase Error at 10 MHz
130、A 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference19 of 80Challenges in Digital I/Q DemodulationTBCAS19100 Hz 10 MHzVisin(t)Vicos(t)LPF2 LPF1 M1M2IQZLAD
131、CImpedancedataIisin(t)IACurrent InjectingVoltage Recording12.2 mW0.15Phase Error at 10 MHzA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference20 of 80Outl
132、ineBackground and MotivationBasics of Bioimpedance SpectroscopyConventional Readout MethodTime-to-digital Readout MethodProposed Bioimepdance Spectropy ASICCo-prime Delay Locked SamplingHardware ImplementationMeasured ResultsSummary and ConclusionA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedan
133、ce Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference21 of 80Time-to-digital Impedance Readout0Vdc|Vm|A 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation
134、 with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference22 of 80Time-to-digital Impedance Readout0Vdc|Vm|Comparator ClockT0T1T2 N2A 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked
135、Sampling 2025 IEEE International Solid-State Circuits Conference23 of 80Time-to-digital Impedance Readout0Vdc|Vm|Comparator ClockComparator OutputT0T1T2 N2N1A 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling
136、2025 IEEE International Solid-State Circuits Conference24 of 80Time-to-digital Impedance Readout0Vdc|Vm|Comparator ClockComparator OutputT0T1T2 N2N1=A 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEE
137、E International Solid-State Circuits Conference25 of 80Time-to-digital Impedance Readout0Vdc|Vm|Comparator ClockComparator OutputSync Clock ReferenceT0T1T2 N2N1=A 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampl
138、ing 2025 IEEE International Solid-State Circuits Conference26 of 80Time-to-digital Impedance Readout0Vdc|Vm|Comparator ClockComparator OutputSync Clock ReferenceT0T1T2 N2N1=N0A 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Dela
139、y Locked Sampling 2025 IEEE International Solid-State Circuits Conference27 of 800Vdc|Vm|Comparator ClockComparator OutputSync Clock ReferenceT0T1T2 N2N1=N0Time-to-digital Impedance ReadoutA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with
140、 Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference28 of 80Challenges in Time-to-digital Impedance Readout0Vdc|Vm|Comparator ClockComparator OutputSync Clock ReferenceT0T1T2 N2N1=N0Decreased Resolution in High FrequencyA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bi
141、oimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference29 of 80OutlineBackground and MotivationBasics of Bioimpedance SpectroscopyConventional Readout MethodTime-to-digital Readout MethodProposed Bioime
142、pdance Spectropy ASICCo-prime Delay Locked SamplingHardware ImplementationMeasured ResultsSummary and ConclusionA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits
143、Conference30 of 80Co-prime Delay Locked Sampling Method30 MHzA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference31 of 80Co-prime Delay Locked Sampling Me
144、thodT 2T 3T 4T5T 6T 7T 8T30 MHz240 MHzA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference32 of 80Co-prime Delay Locked Sampling MethodT 2T 3T 4T5T 6T 7T
145、8T30 MHz240 MHzA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference33 of 80Co-prime Delay Locked Sampling MethodT 2T 3T 4T5T 6T 7T 8T30 MHz240 MHzA 30 MHz
146、 Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference34 of 80Co-prime Delay Locked Sampling MethodT 2T 3T 4T5T 6T 7T 8T30 MHz240 MHzA 30 MHz Wideband 92.7dB SNR 99
147、.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference35 of 80Co-prime Delay Locked Sampling MethodT 2T 3T 4T5T 6T 7T 8T30 MHz240 MHzA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedanc
148、e Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference36 of 80Co-prime Delay Locked Sampling MethodT 2T 3T 4T5T 6T 7T 8T=/Where M is an integer30 MHz240 MHzA 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedanc
149、e Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference37 of 80Co-prime Delay Locked Sampling MethodT 2T 3T 4T5T 6T 7T 8T=/Where M is an integer Multi-phase Ring Oscillator30 MHz240 MHzA 30 MHz Wideband 92.7dB S
150、NR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference38 of 80Co-prime Delay Locked Sampling MethodDelay Step:Delay Step:A 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spect
151、roscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference39 of 80Co-prime Delay Locked Sampling MethodDelay Step:Delay Step:=+Where and A 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-t
152、o-Digital Demodulation with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference40 of 80Co-prime Delay Locked Sampling MethodDelay Step:Delay Step:=+Where and =,=A 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulati
153、on with Co-Prime Delay Locked Sampling 2025 IEEE International Solid-State Circuits Conference41 of 80Co-prime Delay Locked Sampling MethodDelay Step:Delay Step:=+Where and =,=,=A 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime D
154、elay Locked Sampling 2025 IEEE International Solid-State Circuits Conference42 of 80Co-prime Delay Locked Sampling MethodDelay Step:Delay Step:=+Where and =,=,=,=A 30 MHz Wideband 92.7dB SNR 99.6%Accuracy Bioimpedance Spectroscopy IC Using Time-to-Digital Demodulation with Co-Prime Delay Locked Samp
155、ling 2025 IEEE International Solid-State Circuits Conference43 of 80Co-prime Delay Locked Sampling MethodDelay Step:Delay Step:=+Where and TDelay 25x20 x12mm3)No protocol for emergency mode35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE Intern
156、ational Solid-State Circuits Conference12 of 58Prior Art:Bio-Signal AuthenticationM.Rostami,ACM CCS13Signatures extracted from bio-signal enable PSK-less authenticationMeasurement variability due to body motionBroken by non-contact sensing methodsNo guarantee of uniqueness of extracted bio-signalIMD
157、(inside)recoded bio-signal PatientDoctorProgrammer(outside)measured bio-signal=?35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference13 of 58Full stack ME-DTLS protocolZero-overhead 2FA scheme protects a
158、gainst password leakPSK-less emergency access This Work:2FA with Emergency AccessTRX coil+PCBSuper capME film with tiny magnet Dimension:10.9x3.2x2.3mm3DTLS:Datagram Transport Layer Security35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE Inter
159、national Solid-State Circuits Conference14 of 58Full stack ME-DTLS protocolZero-overhead 2FA scheme protects against password leakPSK-less emergency access High data rate Magnetoelectric(ME)active driving uplink schemeThis Work:2FA with Emergency AccessTRX coil+PCBSuper capME film with tiny magnet D
160、imension:10.9x3.2x2.3mm3DTLS:Datagram Transport Layer Security35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference15 of 58Outline Background and Challenges Design PrincipleMisalignment-Based 2FASecurity
161、 Protocol Implant Prototype Overview System Implementation Measurements Conclusion35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference16 of 58Received Voltage Drop for Wireless ImplantInherent behavior
162、in mainstream WPT modalities Inductive link,Ultrasonic,MEImplantTransmitter Received voltage(V)Lateral offset35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference17 of 58Misalignment-based 2FAUser introd
163、uces TX displacement Different displacements represent different values-No additional sensorImplantTransmitter Received voltage(V)Lateral offset“1”“0”35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference
164、18 of 58Security Protocol:Standard Mode1st factorSecure channel w/lightweight ME-DTLS InternetBLEImplantServerUplink&downlinkPowerWearable Hub(relay)Phone(relay/gateway)35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State
165、Circuits Conference19 of 58InternetBLEImplantServerUplink&downlinkPowerWearable Hub(relay)Phone(relay/gateway)Security Protocol:Standard Mode1st factorSecure channel w/lightweight ME-DTLS 2nd factorUser authentication w/pattern input35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentic
166、ation with Emergency Access 2025 IEEE International Solid-State Circuits Conference20 of 58Security Protocol:Emergency ModeDistance-bounded uplink compensates for the absence of PSKImplant generate patternUser authentication w/pattern inputBLEResponderImplantUplink&downlinkPowerWearable Hub(relay)35
167、.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference21 of 58A Wireless ME Bio-Implant PrototypeVrectSHA256RectifierPMUStimulatorTemp sensorSuppliesME-DTLS EngineAES128TRNGPUF keyTdatapatternActive driving
168、 TXDownlink decodeBasebandCommunication FSM&config regfileConfig bits to each moduleData_inData_outVrect ADC1st factor Auth.ME filmExternal hubME power&downlinkME power TXME uplinkME uplink RXMovingPattern detectionBLE moduleCLK recovery&FLLCLKController2nd factor Auth.CLKElectrode35.4 A Miniature B
169、iomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference22 of 58VrectSHA256RectifierPMUStimulatorTemp sensorSuppliesME-DTLS EngineAES128TRNGPUF keyTdatapatternActive driving TXDownlink decodeBasebandCommunication FSM&config
170、regfileConfig bits to each moduleData_inData_outVrect ADC1st factor Auth.ME filmExternal hubME power&downlinkME power TXME uplinkME uplink RXMovingPattern detectionBLE moduleCLK recovery&FLLCLKController2nd factor Auth.CLKElectrodeA Wireless ME Bio-Implant PrototypeAn all-in-one ME transducer Wirele
171、ss power transfer Bidirectional communication Two-factor authentication35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference23 of 58VrectSHA256RectifierPMUStimulatorTemp sensorSuppliesME-DTLS EngineAES12
172、8TRNGPUF keyTdatapatternActive driving TXDownlink decodeBasebandCommunication FSM&config regfileConfig bits to each moduleData_inData_outVrect ADC1st factor Auth.ME filmExternal hubME power&downlinkME power TXME uplinkME uplink RXMovingPattern detectionBLE moduleCLK recovery&FLLCLKController2nd fact
173、or Auth.CLKElectrodeA Wireless ME Bio-Implant PrototypeAn all-in-one ME transducerLightweight ME-DTLS engine The 1stfactor auth.Low cost,high accurate 2ndfactor detection DTLS:Datagram Transport Layer Security35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Acc
174、ess 2025 IEEE International Solid-State Circuits Conference24 of 58VrectSHA256RectifierPMUStimulatorTemp sensorSuppliesME-DTLS EngineAES128TRNGPUF keyTdatapatternActive driving TXDownlink decodeBasebandCommunication FSM&config regfileConfig bits to each moduleData_inData_outVrect ADC1st factor Auth.
175、ME filmExternal hubME power&downlinkME power TXME uplinkME uplink RXMovingPattern detectionBLE moduleCLK recovery&FLLCLKController2nd factor Auth.CLKElectrodeA Wireless ME Bio-Implant PrototypeAn all-in-one ME transducerLightweight ME-DTLS engineA mechanical input structure 2nd-factor authentication
176、 Emergency mode access35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference25 of 58Outline Background and Challenges Design Principle System ImplementationMechanical Structure for DisplacementPattern Det
177、ectionWidth Mode Active Driving ME Uplink Measurements Conclusion35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference26 of 58WPT transducerRectifierVrectImplant2cm offset:Data 12.5cm offset:Data 001020L
178、ateral offset(mm)13Measured Vrect(V)230Data 1Data 0Mechanical Structure for DisplacementUser dial input converts to lateral displacementReceived voltage drop at the output of rectifier(Vrect)TRX coil+PCB35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 20
179、25 IEEE International Solid-State Circuits Conference27 of 58WPT transducerRectifierVrectPattern detectorImplantDetected pattern2cm offset:Data 12.5cm offset:Data 001020Lateral offset(mm)13Measured Vrect(V)230Data 1Data 0Mechanical Structure for DisplacementDetect patterns based on Vrect changesTRX
180、coil+PCB35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference28 of 58Pattern DetectionCLK from FLLLevel shifterFoutCounterDoutRO-Based ADC for Vrect SensingVDD=VrectEN_sense Voltage sensingIDSVrect2(in s
181、at.region)Fout=1/Tclk IDS/(Cpara*Vrect)Fout Vrect(1st order approx.)35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference29 of 58CLK from FLLLevel shifterFoutCounterDoutRO-Based ADC for Vrect SensingData
182、 classifier VDD=VrectPattern DetectionSampler&data buffer8-bit detected pattern dVrect/dtPeak location detectionCLK from FLLEN_sensePattern Detection Slope-based pattern detectiondVrect/dt determines sample pointsWaveform varies with implant position Voltage sensingIDSVrect2(in sat.region)Fout=1/Tcl
183、k IDS/(Cpara*Vrect)Fout Vrect(1st order approx.)35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference30 of 58Slope-Based Pattern Detection Scenario 1:implant placed on the left side of the planeTXImplant
184、FieldDial 0Dial 1TXImplantFieldVrectVrectTXTX35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference31 of 58Slope-Based Pattern Detection Scenario 1:implant placed on the left side of the planeTXImplantFie
185、ldTXDial 0Dial 1TXImplantFieldTXVrectVrect35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference32 of 58Slope-Based Pattern Detection Scenario 1:implant placed on the left side of the planeTXImplantFieldT
186、XDial 0Dial 1TXImplantFieldTXVrectVrect35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference33 of 58Slope-Based Pattern Detection Scenario 1:implant placed on the left side of the planeTXImplantFieldTXDi
187、al 0Dial 1TXImplantFieldTXVrectVrect35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference34 of 58Slope-Based Pattern Detection Scenario 1:implant placed on the left side of the planeTXImplantFieldTXDial
188、0Dial 1TXImplantFieldTXVrectIndicatorVrectIndicatorThreshold35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference35 of 58Slope-Based Pattern Detection Scenario 1:implant placed on the left side of the pl
189、aneTXImplantFieldTXDial 0Dial 1TXImplantFieldTXVrectVrectIndicatorIndicatorThreshold35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference36 of 58Slope-Based Pattern Detection Scenario 2:implant placed on
190、 the right side of the planeDial 0Dial 1TXImplantFieldTXImplantFieldTXTXVrectVrect35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference37 of 58Slope-Based Pattern Detection Scenario 2:implant placed on t
191、he right half planeTXDial 0Dial 1TXTXImplantFieldTXImplantFieldVrectVrect35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference38 of 58Slope-Based Pattern Detection Scenario 2:implant placed on the right
192、half planeDial 0Dial 1TXImplantFieldTXVrectVrectTXImplantFieldTX35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference39 of 58Slope-Based Pattern Detection Scenario 2:implant placed on the right half plan
193、eTwo indicators in one pattern inputDial 0Dial 1TXImplantFieldTXVrectIndicatorVrectIndicatorTXImplantFieldTX35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference40 of 58Slope-Based Pattern Detection Scen
194、ario 2:implant placed on the right half planeDirectional damper-zero-overhead computation on the implantTRX coil+PCBDirectional DamperNot dampedDamped-9.07V/s-1.25V/sVrectVrectDetection thresholddVrectdtIndicatorDial 1Dial 035.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication wit
195、h Emergency Access 2025 IEEE International Solid-State Circuits Conference41 of 58Width Mode Active Driving ME Uplink1357911131004007001000 x105(Hz)ME Impedance(Ohm)ME length mode resonanceME width mode resonanceHigh Q-Good for powerLow Q-High BW&datarateLength mode Width mode Ni Coated PZTEpoxyMetg
196、lasS.Hosur,TBioCAS2435.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference42 of 58Width Mode Active Driving ME Uplink PA units and output duty cycle can be adjustableBalance power consumption and communic
197、ation distance Ensure distance-bounded condition in emergency35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference43 of 58Outline Background and Challenges Design Principle System Implementation Measurem
198、ents Conclusion35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference44 of 58Die Photo1.97mm2.07mmPUFTempSensME-DTLS engine1.1x1.4mm2ME uplinkVrect ADC&Pattern detectionFLLFSMConfig RegDecapSTMPMUDecap180
199、nm CMOSChip area:4.08mm235.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference45 of 58Measurement of Pattern Detection:Distribution0204060010203040Bit 0:=6.80=0.34Bit 1:=58.60=1.26Bit 0:=62.77=0.60Bit 1:=
200、95.37=0.970204060ADC output code010203040Bit 0:=9.04=0.36Bit 1:=28.81=1.1420406080ADC output code05101520Bit 0:=49.94=0.82Bit 1:=59.81=1.012cm distance w/o offset2cm distance,1cm offset,45 rotation406080100010203040Number of sampleNumber of sample4cm distance w/o offset4cm distance,1cm offset,45 rot
201、ation35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference46 of 58Measurement of ME Uplink:BER6.17nJ/bit5.03nJ/bit2.65nJ/bit55kbps110kbps123456External TRX-Implant Distance(cm)10-710-610-510-410-310-210-
202、1BERLimited by recording timeDistance bound35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference47 of 58System Measurement:Standard Mode1st factor authentication 2nd factor authentication Application dat
203、a:program&sensingME-DTLS processMeasured Communication Waveform for One Fragment1101 State101State data structureVAC1Uplink Data(from implant)Downlink Uplink Data(from RX)Interference from TXUplink000000011110 1010DataRate:Carrier/16=55kbps128 bit uplink:24 bit header+96 bit encrypted payload+8 bit
204、CRCME-DTLSstateData clear indicator35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference48 of 58System Measurement:Standard Mode1st factor authentication 2nd factor authentication Application data:progra
205、m&sensingME-DTLS processOperating Waveform of Pattern Detection for Scenario 1Implant position:(0,0,2)cmNo rotationTX1Pattern10 1 0 0 0 1 1 0VrectDetection indicator&outputPattern1 Pattern2Fast move Damped return0110001018s1.2V dropIn reverseXYZImplantTX MovingDetection indicator35.4 A Miniature Bio
206、medical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference49 of 58System Measurement:Standard Mode1st factor authentication 2nd factor authentication Application data:program&sensingME-DTLS process0 1 0 0 0 1 1 0Pattern1Pattern2
207、01100010Detection indicatorVrectFast moveCross maxima field pointDamped return450mV dropIn reverseTXXYZImplant position:(1,0,2)cmRotate 45 in y-z planeImplantTX MovingOperating Waveform of Pattern Detection for Scenario 235.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with E
208、mergency Access 2025 IEEE International Solid-State Circuits Conference50 of 58System Measurement:Standard Mode1st factor authentication 2nd factor authentication Application data:program&sensingME-DTLS processProgramming stimulation after 2FAPulse width:0.3msPulse width:0.8msTemperature sensor read
209、outDecoded data:21.3CDownlink:ACKUplink framesDownlink:ACKDownlink:ACKDownlink:ACKDecoded message:0 x00F6Application DataVAC1UplinkDataStim_out_A35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference51 of
210、 58Distance-bounded pattern uplinkUser pattern inputApplication data:program&sensingME-DTLS processin emergency modeSystem Measurement:Emergency Mode0000 0001 0000 0110 0000 0000 1001 0100message length,sequence number,fragment number,patternCRC=0 x42Data clear indicatorUplink Data(from RX)Uplink Da
211、ta(from implant)VAC235.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference52 of 58Mass Volunteer Authentication TestingAge group#of volunteers0 19220 29430 39240 49150 1total10N(volunteer)=10#of patterns=
212、405TX-implant distance(cm)Lateral offset(cm)Angular offset(degree)#of patternsSuccess rate0050100.00%05098.00%4550100.00%0035100.00%03597.14%453597.14%0050100.00%05096.00%455096.00%98.27%423Average11135.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025
213、IEEE International Solid-State Circuits Conference53 of 58Energy Breakdown for 1stFactor Authentication Authentication latency:1stfactor:0.36s2ndfactor:10 20sAlways-on(PMU,FLL,etc.)11.7uJME-DTLS engine4.9uJUplink5.0uJ35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emerg
214、ency Access 2025 IEEE International Solid-State Circuits Conference54 of 58Voltage Scaling for ME-DTLS Engine0.70.80.91Voltage(V)051015345678Max frequency(MHz)Energy for 1st factor auth.(J)35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE Intern
215、ational Solid-State Circuits Conference55 of 58Comparison TableThis WorkS.MajiCICC 20 7S.MaityJSSC 21 19M.RostamiCCS 13 5IMDIMDWearable devicesIMD1806565MCUME-DTLSDTLS-PSKBody channelTLSTRX movement patternUser tapNoneECGNoneTouch sensorNoneECG sensorYesNoNoYesEavesdroppingYesYesYesYesReplayYesYesYe
216、sYesPassword leakageYesYesNoYes1.1mm x 1.4mm(ME-DTLS engine)315um20.17mm2N/A10.9x3.2x2.325x20 x12+sensor(20 x20 x0.5)*N/AN/A2nd factorImplant package volume(mm3)TechnologySecure channelEmergency modeAreaAttack resistanceSensor overheadApplicationWith State-of-the-Art Authentication Schemes for Medic
217、al Devices35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference56 of 58This WorkZ.YuISSCC24 17S.HosurTbioCAS24 18M.RoschelleJSSC24 20L.ZhaoTbioCAS24 21Core temp sensing,stimulationStimulation,recordingN/
218、AIn vivo imagingECG,PPG,Tsensor180180N/A180180Transducer(frequency)ME(320k)ME(331k)ME(330k)Ultrasound(920k)Inductive(13.56M)Efficiency0.3%(2cm)0.37%(2cm)0.04%(2cm)3.3%(5cm)N/AModulationTime domainTime domainTime domainPPM-OOKData rate(kbps)Average:20Average:12.56Average:0.14350ModulationContinuous O
219、OKPWM backscatterPulse OOKASK backscatterIF-LSK backscatterCarrier frequency(kHz)87033170992013560Data rate(kbps)11017.731013192Data rate/carrier freq0.1260.0540.0140.0140.014BER3.3E-63cm55kbps1.5E-42cm110kbps2E-43cm1e-33cm*1e-65cmN/AN/AData uplink *Results for width mode WPTTechnology(nm)Biomedical
220、 functionDatadownlinkComparison TableWith State-of-the-Art Wireless Link Schemes for Medical Applications35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference57 of 58ConclusionZero-overhead 2FA scheme fo
221、r secure miniature bio-implantFull stack ME-DTLS engineWPT inherent voltage profile as a physical channel w/o extra sensorsLow-cost pattern detection circuit,achieving a 98.27%success rateActive driving ME uplink via ME width mode resonantUp to 110kbps data rate Up to 6cm communication distanceFully
222、 integrated implantable prototype35.4 A Miniature Biomedical Implant Secured by Two-Factor Authentication with Emergency Access 2025 IEEE International Solid-State Circuits Conference58 of 58AcknowledgementThis work is supported in part by the National Science Foundation(NSF)CAREER award(2146476).Th
223、e authors would like to thank Weili Fan for contributing to the AES module.35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE Internationa
224、l Solid-State Circuits Conference1 of 80A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current Regulation Achieving Precise Charge Delivery and Electrode Scalability for Miniaturized ElectroceuticalsYechan Park,Chul Kim,Minkyu JeKAIST,Daejeon,Korea35.5:A Wirele
225、ss Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference2 of 80Outline Introduction Proposed Wireless Neural St
226、imulatorSystem Architecture and Operation PrincipleKey Building Blocks Measurement Results Conclusion35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceutic
227、als 2025 IEEE International Solid-State Circuits Conference3 of 80Outline Introduction Proposed Wireless Neural StimulatorSystem Architecture and Operation PrincipleKey Building Blocks Measurement Results Conclusion35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Sti
228、mulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference4 of 80MotivationEpilepsyDepressionNerveRegenerationFacial Nerve StimulationVagus Nerve StimulationFacial nerve stimulation:Pro
229、moting the recovery of damaged facial nerves,aiding functional restorationVagus nerve stimulation:Modulating vagus nerve activity to reduce seizures and regulate mood35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge
230、Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference5 of 80Challenges in Miniaturizing Neurostimulatorsa:Electrode-tissue-impedance,b:Power conversion efficiency,c:Stimulation efficiency factor,d:ETI voltageEnergy Efficiency(Hig
231、h PCEa&SEFb)Precise Charge Delivery(Insensitivity to ETI)Electrode Downsizing(High ETIa)RX Coil Miniaturization(Low Power Delivery)Cable-ElectrodesElectrode Scalability(High VT,MAXd)35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving
232、 Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference6 of 80Challenges in Miniaturizing Neurostimulatorsa:Electrode-tissue-impedance,b:Power conversion efficiency,c:Stimulation efficiency factor,d:ETI voltageEnerg
233、y Efficiency(High PCEa&SEFb)Precise Charge Delivery(Insensitivity to ETI)Electrode Downsizing(High ETIa)RX Coil Miniaturization(Low Power Delivery)Cable-ElectrodesElectrode Scalability(High VT,MAXd)35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current Reg
234、ulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference7 of 80Comparison of Stimulation ModalitiesVoltage-Controlled StimulatorHigh EfficiencyLimited Charge ControlSusceptibility to ETICurrent-Contro
235、lled StimulatorHigh ControllabilityInsensitivity to ETILow Efficiency*ETI:Electrode-Tissue InterfaceVTISTIMNeuronsVOISTIMCathodic PhaseVOVSSVTtAnodic PhaseVTISTIMNeuronsVOISTIMCathodic PhaseVOVSSVTtAnodic PhaseVTISTIMNeuronsVOISTIMCathodic PhaseVOVSSVTtAnodic PhaseVTISTIMNeuronsVOISTIMCathodic Phase
236、VOVSSVTtAnodic Phase35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference8 of 80Comparison of S
237、timulation ModalitiesVoltage-Controlled StimulatorHigh EfficiencyLimited Charge ControlSusceptibility to ETICurrent-Controlled StimulatorHigh ControllabilityInsensitivity to ETILow Efficiency*ETI:Electrode-Tissue InterfaceVTISTIMNeuronsVOISTIMCathodic PhaseVOVSSVTtAnodic PhaseVTISTIMNeuronsVOISTIMCa
238、thodic PhaseVOVSSVTtAnodic PhaseVTISTIMNeuronsVOISTIMCathodic PhaseVOVSSVTtAnodic PhaseVTISTIMNeuronsVOISTIMCathodic PhaseVOVSSVTtAnodic Phase35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode S
239、calability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference9 of 80Key Performance Indicators for StimulatorsESTIM=(EPROVIDED+EWASTEDEREPLENISHED)SEF=ESTIM(Ideal Current Source w/Fixed DC Rail)ESTIM(Stimulator under Test)PCE vs.SEF Trade-OffSophisticated Suppl
240、y Modulation for High SEFSEF(stimulation efficiency factor)introduced to standardize comparison of stimulator designs across varying conditionsVT,RRVOPVONEWASTEDEPROVIDEDEREPLENISHIEDVDDVSSVT,RRAdiabatic Supply Voltages(This Work)Constant DC Supply Voltages(Ideal Current Sources)S.Ha,TBioCAS1935.5:A
241、 Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference10 of 80Key Performance Indicators for Stimulato
242、rsHigh ETI voltage(VT)required to support compact electrodes Inevitable reduction in PCEPCE vs.VT,MAXTrade-OffHigh VT,MAXfor Electrode ScalabilityVTISTIMNeuronsVOSTIM1VSSVOVO,MAXVT,MAXVT VOHigh Electrode-Tissue-Impedance(ETI)due to Miniaturized Electrodes35.5:A Wireless Adiabatic Stimulator System w
243、ith Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference11 of 80VTVOVOAdditional Loss of Constant Supply VoltageAll Provided EnergyDissipatedVO
244、,INITSTIM1STIM2tISTIMEWASTEDEPROVIDEDEREPLENISHEDEDISSIPATEDVACVOREC3SWs,3CapsC2CP18SWs,12CapsVTETIISTIMSTIM1STIM2VDSL2Conventional Wireless Neural StimulatorsConstant/Semi-Adaptive MethodsC.-H.Cheng,JSSC18Low PCELow SEFSusceptibility to ETIHigh VT,MAX(Only STIM1Connection Presented)35.5:A Wireless
245、Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference12 of 80VACL2C2VOVTETIDiff.CP30SWs,15CapsVOPVONLDORECISTIM
246、VDSVDSSTIM1STIM2tISTIMEWASTEDEPROVIDEDEREPLENISHEDEDISSIPATEDVTVOIncomplete Operation(Charge Remained)NoVDS VDS,MIN due to Estimated ISTIMVO,INITISTIMConventional Wireless Neural StimulatorsSemi-Adiabatic MethodS.Ha,TBioCAS19Low PCEHigh SEFSusceptibility to ETIHigh VT,MAX(Only STIM1Connection Presen
247、ted)35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference13 of 80VACVOISTIM SensingVTETIRECReco
248、nfig.CP2SWs,6Caps18SWs,4CapsVMIDC2ISTIMCMIDL2STIM1STIM2tISTIMEWASTEDEPROVIDEDEREPLENISHEDEDISSIPATEDVTVMIDVOLarge Backward Current from CMID to CCP,OUTLow Delivered Energy High ETIdue to VT,MAX VMID VO,INITConventional Wireless Neural StimulatorsLow PCE Low ISTIMHigh SEFSusceptibility to ETILow VT,M
249、AX(Only STIM1Connection Presented)Adiabatic Method(Voltage Stimulation)S.Agarwal,VLSI2435.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE
250、International Solid-State Circuits Conference14 of 80Outline Introduction Proposed Wireless Neural StimulatorSystem Architecture and Operation PrincipleKey Building Blocks Measurement Results Conclusion35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current
251、 RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference15 of 80STIM1STIM2tISTIMEWASTEDEPROVIDEDEREPLENISHEDEDISSIPATEDVTVOVDS,MIN Trackingin Both PhasesVO Lower than VT by VDS,MIN to maximize ene
252、rgy replenishingVO,INITVACVOPC2L2VONVOISTIM Sensing2SWs,2CapsVTETIISTIMVDS,MINVDS,MINProposed Wireless Neural StimulatorsHigh PCEHigh SEFInsensitivity to ETIHigh VT,MAX(Only STIM1Connection Presented)Adiabatic Method(Current Stimulation)35.5:A Wireless Adiabatic Stimulator System with Current-Mode P
253、ower Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference16 of 80System ArchitectureVT,LLVGNVT,RRL1C1RX ChipVXISTIMSTIM1CathodicSTIM2ASTIM2BSTIMADIABVSSVOP,LVON,L
254、VT,RRVOPVT,LLSTIM2STIMVONISTIM Sensing&Regulation with VDS,MIN TrackingTX ChipVDD,TXVSS,TXPowerAmp.TX CTRLCLKEXTC2L2VACSkin/TissueLow kVPVNVOPVSSVONVON,LVOP,LLDOGen.V&IVACVPSTIMEXTBBSTVOP/VXASTIMSTIM1,2DCTRLSTIM1,2VN/VPCLKISENI-REGSTIM1,2VT,LL/VGNCLKISENBBSTSTIMTo ETIAnodicSTIM1VT,RRVOPVT,LLVONVSSST
255、IM2BChargingRegulationDischargingSTIM2A35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference17
256、of 80ISTIMSTIM1CathodicSTIM2ASTIM2BSTIMADIABVSSVOP,LVON,LVT,RRVOPVT,LLSTIM2VONAnodicSTIMSTIMTarget OperationStimulus current regulation:Direct sensing and regulation of ISTIMCurrent-mode power reception:Utilizing the characteristic of CM WPT35.5:A Wireless Adiabatic Stimulator System with Current-Mo
257、de Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference18 of 80ISTIMSTIM1CathodicSTIM2ASTIM2BSTIMADIABVSSVOP,LVON,LSTIM2AnodicSTIMSTIMVOPVONVT,LLVT,RRTarget
258、 Operation:Idle PeriodSupply voltage regulated to a minimum level,waiting for the stimulation initiation signal(STIM)35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturiz
259、ed Electroceuticals 2025 IEEE International Solid-State Circuits Conference19 of 80ISTIMSTIM1CathodicSTIM2ASTIM2BSTIMADIABVSSVOP,LVON,LVOPSTIM2VONAnodicSTIMSTIMVT,RRVT,LLTarget Operation:STIM1(Cathodic Phase)Increasing supply voltage as VTrises due to cathodic ISTIM,maintaining VDS,MINof the stimulu
260、s current sources35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference20 of 80ISTIMSTIM1Cathodi
261、cSTIM2BSTIMADIABVSSVOP,LVON,LSTIMSTIMSTIM2VT,RRVT,LLVOPVONAnodicSTIM2ATarget Operation:STIM2A(Anodic Phase)Decreasing supply voltage as VTreduces due to anodic ISTIM,maintaining VDS,MINof the stimulus current sources35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and St
262、imulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference21 of 80ISTIMSTIM1CathodicSTIM2ASTIM2BSTIMADIABVSSVOP,LVON,LVT,RRVT,LLSTIMSTIMSTIM2AnodicVOPVONTarget Operation:STIM2B(Anodic
263、Phase)Supply voltage regulated to a minimum level,eliminating all residual charge in the ETI and completing stimulation35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniatur
264、ized Electroceuticals 2025 IEEE International Solid-State Circuits Conference22 of 80CM WPT(Current-Mode Wireless Power Transfer)CM WPT:Supporting miniaturized RX coil(low k)with energy build-up through resonance and transfer via boost operationResonance PhaseEnergy Build-Up for N CycleM.Choi,ISSCC1
265、6Charging PhaseEnergy Delivery to the LoadC2L2IACISWResonancet0IACChargingResonancet0ISW(IAC)C2L2IACISWCharging35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Ele
266、ctroceuticals 2025 IEEE International Solid-State Circuits Conference23 of 80STIM1VOPVT,LLVONVSSSTIM2BChargingDischargingSTIM2ARegulationVT,RRVACVOPC2L2VONVOISTIM SensingVTVT,RRVT,LLIACISWResonanceChargingISTIMVDSVDSVXOperation Principle*Supply Voltage:VOP VON*ETI:Electrode-Tissue Interface*VT:ETI V
267、oltage(=VT,RRVT,LL)tt0ISW(IAC)t0ISTIMVVOPVON0No StimulationRegulated Bipolar Supply VoltagesChargingResonanceVT_RR=VT_LL=0VResonanceChargingIdle period(w/o stimulation)and STIM2B(anodic phase)during stimulation period Regulated supply voltage neededIdle Period35.5:A Wireless Adiabatic Stimulator Sys
268、tem with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference24 of 80STIM1VOPVT,LLVONVSSSTIM2BChargingDischargingSTIM2ARegulationVT,RRVACVOPC2L
269、2VONVOISTIM SensingVTVT,RRVT,LLIACISWResonanceChargingISTIMVDSVDSVXOperation Principle*Supply Voltage:VOP VON*ETI:Electrode-Tissue Interface*VT:ETI Voltage(=VT,RRVT,LL)tt0ISW(IAC)t0ISTIMVVOPVON0No StimulationRegulated Bipolar Supply VoltagesChargingResonanceVT_RR=VT_LL=0VResonanceChargingIdle period
270、:Regulated supply voltage generated through CM WPT operation,leveraging a bang-bang approachIdle Period35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceut
271、icals 2025 IEEE International Solid-State Circuits Conference25 of 80VONSTIM2ASTIM1STIM2BChargingRegulationVOPVSSDischargingVT,LLVT,RROperation Principle*Supply Voltage:VOP VON*ETI:Electrode-Tissue Interface*VT:ETI Voltage(=VT,RRVT,LL)STIM1(cathodic phase)during stimulation period Stimulus current r
272、egulation and increasing supply voltage neededVACVOPC2L2VONVOISTIM SensingVTVT,RRVT,LLIACISWResonanceChargingISTIMVDSVDSVXVACVOPC2L2VONVOISTIM SensingVTVT,RRVT,LLIACISWISTIMVDSVDSVREF,SEN VSEN1VX35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current Regula
273、tionAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference26 of 80VONSTIM2ASTIM1STIM2BChargingRegulationVOPVSSDischargingVT,LLVT,RROperation Principle*Supply Voltage:VOP VON*ETI:Electrode-Tissue Interface*
274、VT:ETI Voltage(=VT,RRVT,LL)STIM1:Cathodic ISTIMincreasing VTwhile reducing VDSof the current sources in the stimulator,resulting in decreased ISTIMVACVOPC2L2VONVOISTIM SensingVTVT,RRVT,LLIACISWResonanceChargingISTIMVDSVDSVXVACVOPC2L2VONVOISTIM SensingVTVT,RRVT,LLIACISWISTIMVDSVDSVREF,SEN VSEN1VXISWt
275、t0t0ISTIM(IAC)VVOPVON0VT,RRVT,LLReduced VDS(=VOP VT,RR)Decreased ISTIM35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Sol
276、id-State Circuits Conference27 of 80VONSTIM2ASTIM1STIM2BChargingRegulationVOPVSSDischargingVT,LLVT,RROperation Principle*Supply Voltage:VOP VON*ETI:Electrode-Tissue Interface*VT:ETI Voltage(=VT,RRVT,LL)STIM1:Ensuring VDSto maintain ISTIMby sensing ISTIMand increasing the supply voltage by the boost
277、operation of CM WPTVACVOPC2L2VONVOISTIM SensingVTVT,RRVT,LLIACISWResonanceChargingISTIMVDSVDSVXVACVOPC2L2VONVOISTIM SensingVTVT,RRVT,LLIACISWISTIMVDSVDSVREF,SEN VSEN1VXISWtt0t0ISTIM(IAC)VVOPVON0VT,RRVT,LLVT,RRRaised VDS(=VOP VT,RR)Increased ISTIMBoost Operation35.5:A Wireless Adiabatic Stimulator Sy
278、stem with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference28 of 80VONSTIM2ASTIM1STIM2BChargingRegulationVOPVSSDischargingVT,LLVT,RROperatio
279、n Principle*Supply Voltage:VOP VON*ETI:Electrode-Tissue Interface*VT:ETI Voltage(=VT,RRVT,LL)STIM1:Increasing supply voltage generated through CM WPT operation,enabling stimulus current regulationVACVOPC2L2VONVOISTIM SensingVTVT,RRVT,LLIACISWResonanceChargingISTIMVDSVDSVXVACVOPC2L2VONVOISTIM Sensing
280、VTVT,RRVT,LLIACISWISTIMVDSVDSVREF,SEN VSEN1VXISWtt0VT,RRVT,LLt0ISTIM(IAC)Regulated Cathodic ISTIMBoost OperationVVOPVON035.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniatu
281、rized Electroceuticals 2025 IEEE International Solid-State Circuits Conference29 of 80VONSTIM1STIM2BChargingRegulationVOPVSSDischargingVT,LLVT,RRSTIM2AVONVACVOPC2L2VONVOISTIM SensingVTVT,RRVT,LLIACISWISTIMVDSVDSVREF,SEN VSEN2VXOperation Principle*Supply Voltage:VOP VON*ETI:Electrode-Tissue Interface
282、*VT:ETI Voltage(=VT,RRVT,LL)STIM2A(anodic phase)during stimulation period Stimulus current regulation and decreasing supply voltage needed35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scala
283、bility for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference30 of 80VONSTIM1STIM2BChargingRegulationVOPVSSDischargingVT,LLVT,RRSTIM2AVONVACVOPC2L2VONVOISTIM SensingVTVT,RRVT,LLIACISWISTIMVDSVDSVREF,SEN VSEN2VXOperation Principle*Supply Voltage:VOP VON*ETI:Electrod
284、e-Tissue Interface*VT:ETI Voltage(=VT,RRVT,LL)STIM2A:Anodic ISTIMdecreasing VTwhile reducing VDSof the current sources in the stimulator,leading to decrease in the magnitude of ISTIMtt0(IAC)t0ISTIMVT,RRVT,LLISWVVOPVON0Reduced VDS(=VT,RR VOP)Decreased ISTIM 35.5:A Wireless Adiabatic Stimulator System
285、 with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference31 of 80VONSTIM1STIM2BChargingRegulationVOPVSSDischargingVT,LLVT,RRSTIM2AVONVACVOPC2L
286、2VONVOISTIM SensingVTVT,RRVT,LLIACISWISTIMVDSVDSVREF,SEN VSEN2VXOperation Principle*Supply Voltage:VOP VON*ETI:Electrode-Tissue Interface*VT:ETI Voltage(=VT,RRVT,LL)STIM2A:Ensuring VDSto maintain ISTIMby sensing ISTIMand decreasing the supply voltage by the reverse-buck operation of CM WPTtt0(IAC)t0
287、ISTIMISWVVOPVON0VT,RRVT,LLRaised VDS(=VT,RR VOP)Increased ISTIM Reverse-Buck Operation35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE I
288、nternational Solid-State Circuits Conference32 of 80VONSTIM1STIM2BChargingRegulationVOPVSSDischargingVT,LLVT,RRSTIM2AVONVACVOPC2L2VONVOISTIM SensingVTVT,RRVT,LLIACISWISTIMVDSVDSVREF,SEN VSEN2VXOperation Principle*Supply Voltage:VOP VON*ETI:Electrode-Tissue Interface*VT:ETI Voltage(=VT,RRVT,LL)STIM2A
289、:Decreasing supply voltage generated through CM WPT operation,supporting stimulus current regulationtt0(IAC)t0ISTIMVT,RRVT,LLRegulated Anodic ISTIMReverse-Buck OperationISWVVOPVON035.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving P
290、recise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference33 of 80Outline Introduction Proposed Wireless Neural StimulatorSystem Architecture and Operation PrincipleKey Building Blocks Measurement Results Conclusion35.5:
291、A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference34 of 80Key Building BlocksVT,LLVGNVT,RRL1C1RX
292、ChipVXISTIMSTIM1CathodicSTIM2ASTIM2BSTIMADIABVSSVOP,LVON,LVT,RRVOPVT,LLSTIM2STIMVONISTIM Sensing&Regulation with VDS,MIN TrackingTX ChipVDD,TXVSS,TXPowerAmp.TX CTRLCLKEXTC2L2VACSkin/TissueLow kVPVNVOPVSSVONVON,LVOP,LLDOGen.V&IVACVPSTIMEXTBBSTVOP/VXASTIMSTIM1,2DCTRLSTIM1,2VN/VPCLKISENI-REGSTIM1,2VT,L
293、L/VGNCLKISENBBSTSTIMTo ETIAnodic35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference35 of 80Co
294、ntroller(CTRL)CTRL:Generating VOthat increases or decreases through boost and reverse-buck operationsBoost OperationIncreasing VOReverse-Buck OperationDecreasing VOVACVOPC2VONIACVXL2ISWResonanceVACVOPC2VONIACVXL2ISWChargingVACVOPC2VONIACVXL2ISWResonanceVACVOPC2VONIACVXL2ISWDischarging35.5:A Wireless
295、 Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference36 of 80VACVOPC2VONIACVXL2ISWVNVPResonanceVACVOPC2VONIACV
296、XL2ISWVNVPChargingController(CTRL):Boost OperationPMOS turning on too early:Leaving energy in the LC tank(VAC0V)CLK to be pushed backwardCLK(VN,P)VACIACVONToo EarlyVAC 0V Too EarlyVAC 0V 35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchi
297、eving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference37 of 80VACVOPC2VONIACVXL2ISWVNVPResonanceVACVOPC2VONIACVXL2ISWVNVPChargingController(CTRL):Boost OperationPMOS turning on too late:Leaving energy in the L
298、C tank(VAC0V)CLK to be pulled forwardVONVACIACToo LateVAC 0V Too LateCLK(VN,P)VAC 0V Rising Edge of CLKCH Controller(CTRL):Reverse-Buck OperationPMOS turning on too early:Initial ISWto flow in the reverse direction CLK to be pushed backward35.5:A Wireless Adiabatic Stimulator System with Current-Mod
299、e Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference43 of 80Controller(CTRL):Reverse-Buck OperationPMOS turning on too late:Excessively high initial ISWth
300、at may turn on the NMOS body diode CLK to be pulled forwardZeroToo EarlyVACVONCLK(VN,P)Too LateISW(IAC)VAC 0V VAC,SLS 0V VAC,SLS 0V VAC,SLS 0V VAC,SLS 0V VAC,SLS 0V VAC,SLS 0V VAC,SLS 0V VAC,SLS VX VOP VX VOP VX CLKFCLKRCLK(VN,P)DecreasedIncreasedVOPISWIACZero IAC DetectionZeroToo EarlyToo LateISW 0
301、 Rising Edge of VPt2VXVACVOPC2VONIACVXL2ISWVNVP35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Confe
302、rence56 of 80Key Building BlocksVT,LLVGNVT,RRL1C1RX ChipVXISTIMSTIM1CathodicSTIM2ASTIM2BSTIMADIABVSSVOP,LVON,LVT,RRVOPVT,LLSTIM2STIMVONISTIM Sensing&Regulation with VDS,MIN TrackingTX ChipVDD,TXVSS,TXPowerAmp.TX CTRLCLKEXTC2L2VACSkin/TissueLow kVPVNVOPVSSVONVON,LVOP,LLDOGen.V&IVACVPSTIMEXTBBSTVOP/VX
303、ASTIMSTIM1,2DCTRLSTIM1,2VN/VPCLKISENI-REGSTIM1,2VT,LL/VGNCLKISENBBSTSTIMTo ETIAnodic35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE Int
304、ernational Solid-State Circuits Conference57 of 80VCMVT,LLEnergy ReplenishingSTIM2AETI ModelVT,RRISTIMVEVEVOPVONVSSAmp.STIM1ISTIMNFB(VCM=VSS)Charge BalancingSTIM2BEnergy DeliverySTIM1VOPVONAdiabatic Stimulator(ASTIM)*Supply Voltage:VOP VON*ETI Voltage:VT=VT,RRVT,LLSTIM1:Energy delivery to ETI during
305、 energy reception via CM WPT,maintaining minimum VDSfor current sources in ASTIMCM WPT Operation STIM1STIM2ASTIM1STIM2BVOPVSSVONtVT,RRVT,LLVVOPVON0VT,LLVT,RR35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery
306、and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference58 of 80VCMVT,LLEnergy ReplenishingSTIM2AETI ModelVT,RRISTIMVEVEVOPVONVSSAmp.STIM2AISTIMNFB(VCM=VSS)Charge BalancingSTIM2BEnergy DeliverySTIM1VOPVONAdiabatic Stimulator(ASTIM)*Supply Vo
307、ltage:VOP VON*ETI Voltage:VT=VT,RRVT,LLSTIM2A:Energy replenishment from ETI to RX LC tank through CM WPT,maintaining minimum VDSfor current sources in ASTIMCM WPT Operation STIM2ASTIM1STIM2BVOPVSSVONtVVOPVON0VT,LLVT,RRSTIM2AVT,RRVT,LL35.5:A Wireless Adiabatic Stimulator System with Current-Mode Powe
308、r Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference59 of 80VCMVT,LL ETI ModelVT,RRISTIMVEVEVOPVONVSSAmp.STIM2BISTIMNFB(VCM=VSS)Charge BalancingSTIM2B Charge Ba
309、lancingSTIM2BVOPVONAdiabatic Stimulator(ASTIM)*Supply Voltage:VOP VON*ETI Voltage:VT=VT,RRVT,LLSTIM2B:Charge balancing during energy reception via CM WPT,completing stimulation by comparing ETI voltagesCM WPT Operation STIM2BSTIM1STIM2BSTIM2AVOPVSSVONtVVOPVON0VT,LLVT,RRRegulated Bipolar Supply Volta
310、gesVT,RRVT,LL35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference60 of 80Adiabatic Stimulator(
311、ASTIM)*Supply Voltage:VOP VON*ETI Voltage:VT=VT,RRVT,LLVCMVT,LLEnergy ReplenishingSTIM2AETI ModelVT,RRDBSVONVT,LLVBDVGNVONSTIMADIABSTIM2BCurrent Source#16DBSVONVT,LLVBDVGNVONSTIMADIABSTIM2BCurrent Source#1DBSVONVT,LLVBDVONSTIM2BVGPVGNVONSTIMADIABSTIM2BCurrent Source#1D4VBDVT,LLVOPBSVONVT,LLSTIMADIAB
312、STIM2BVSSVT,RRVEVEBSVOPVT,RRVOPVCMVONSTIM2AUpper Current Sources Connected to VT,RRLower Current Sources Connected to VT,LLISTIMVEVEVOPVONVSSAmp.STIM1 STIM2A STIM2BISTIMNFB(VCM=VSS)Changing VT(=VT,RR VT,LL)Based on VSS through Negative Feedback(NFB)Adjusting ISTIM via a Current DAC to Maintain Opera
313、ting Point in Current SensorsVOPVONCharge BalancingSTIM2BSTIMVBDVCMVBDVT,RRVT,LLPassive Charge BalancingENSTIM2BVT,LLVT,RRSTIMENDEnergy DeliverySTIM1Upper current sources controlled by negative feedback with an amplifier Equalizing VCMto VSSof the RX chip35.5:A Wireless Adiabatic Stimulator System w
314、ith Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference61 of 80Adiabatic Stimulator(ASTIM)*Supply Voltage:VOP VON*ETI Voltage:VT=VT,RRVT,LLVCM
315、VT,LLEnergy ReplenishingSTIM2AETI ModelVT,RRDBSVONVT,LLVBDVGNVONSTIMADIABSTIM2BCurrent Source#16DBSVONVT,LLVBDVGNVONSTIMADIABSTIM2BCurrent Source#1DBSVONVT,LLVBDVONSTIM2BVGPVGNVONSTIMADIABSTIM2BCurrent Source#1D4VBDVT,LLVOPBSVONVT,LLSTIMADIABSTIM2BVSSVT,RRVEVEBSVOPVT,RRVOPVCMVONSTIM2AUpper Current S
316、ources Connected to VT,RRLower Current Sources Connected to VT,LLISTIMVEVEVOPVONVSSAmp.STIM1 STIM2A STIM2BISTIMNFB(VCM=VSS)Changing VT(=VT,RR VT,LL)Based on VSS through Negative Feedback(NFB)Adjusting ISTIM via a Current DAC to Maintain Operating Point in Current SensorsVOPVONCharge BalancingSTIM2BS
317、TIMVBDVCMVBDVT,RRVT,LLPassive Charge BalancingENSTIM2BVT,LLVT,RRSTIMENDEnergy DeliverySTIM1Lower current sources controlled by a 4b current DAC Adaptively changing the sensing ratio for reliable current sensing35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus
318、 Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference62 of 80Adiabatic Stimulator(ASTIM)*Supply Voltage:VOP VON*ETI Voltage:VT=VT,RRVT,LLVCMVT,LLEnergy ReplenishingSTIM2AETI ModelVT,RRD
319、BSVONVT,LLVBDVGNVONSTIMADIABSTIM2BCurrent Source#16DBSVONVT,LLVBDVGNVONSTIMADIABSTIM2BCurrent Source#1DBSVONVT,LLVBDVONSTIM2BVGPVGNVONSTIMADIABSTIM2BCurrent Source#1D4VBDVT,LLVOPBSVONVT,LLSTIMADIABSTIM2BVSSVT,RRVEVEBSVOPVT,RRVOPVCMVONSTIM2AUpper Current Sources Connected to VT,RRLower Current Source
320、s Connected to VT,LLISTIMVEVEVOPVONVSSAmp.STIM1 STIM2A STIM2BISTIMNFB(VCM=VSS)Changing VT(=VT,RR VT,LL)Based on VSS through Negative Feedback(NFB)Adjusting ISTIM via a Current DAC to Maintain Operating Point in Current SensorsVOPVONCharge BalancingSTIM2BSTIMVBDVCMVBDVT,RRVT,LLPassive Charge Balancin
321、gENSTIM2BVT,LLVT,RRSTIMENDEnergy DeliverySTIM1Stimulation completed by comparing ETI voltages and conducting passive charge balancing35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalabilit
322、y for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference63 of 80Key Building BlocksVT,LLVGNVT,RRL1C1RX ChipVXISTIMSTIM1CathodicSTIM2ASTIM2BSTIMADIABVSSVOP,LVON,LVT,RRVOPVT,LLSTIM2STIMVONISTIM Sensing&Regulation with VDS,MIN TrackingTX ChipVDD,TXVSS,TXPowerAmp.TX CT
323、RLCLKEXTC2L2VACSkin/TissueLow kVPVNVOPVSSVONVON,LVOP,LLDOGen.V&IVACVPSTIMEXTBBSTVOP/VXASTIMSTIM1,2DCTRLSTIM1,2VN/VPCLKISENI-REGSTIM1,2VT,LL/VGNCLKISENBBSTSTIMTo ETIAnodic35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Cha
324、rge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference64 of 80t0ISTIMVVOPVON0t0ISENtAnodic ISTIM Replica of|ISTIM|Scaled-DownVT,RRVT,LLCurrent Sensing and Regulating Circuits(I-REG)t0ISTIMCathodic ISTIMVVOPVON0t0ISEN Replica o
325、f ISTIMtScaled-DownVT,LLVT,RRSTIM2ASTIM1STIM2BVOPVSSVONVT,LLVT,RRAnodicCathodicISTIMVACVOPC2L2VONVOISTIM SensingVTVT,RRVT,LLIACISWISTIMVDSVDSVREF,SEN VSEN1VXSTIM1:Scaled-down replica of the cathodic ISTIM(ISEN),generating the increasing VOto maintain VDS(=VOP VT,RR=VT,LLVON)for ISTIMregulationISTIMS
326、ensing STIM1ISTIMSensing STIM2A35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference65 of 80STI
327、M1STIM2BCathodicVT,LLVT,RRAnodicSTIM2AVOPVSSVONISTIMt0ISTIMVVOPVON0t0ISENtAnodic ISTIM Replica of|ISTIM|Scaled-DownVT,RRVT,LLCurrent Sensing and Regulating Circuits(I-REG)t0ISTIMCathodic ISTIMVVOPVON0t0ISEN Replica of ISTIMtScaled-DownVT,LLVT,RRISTIMSensing STIM1ISTIMSensing STIM2AVACVOPC2L2VONVOIST
328、IM SensingVTVT,RRVT,LLIACISWISTIMVDSVDSVREF,SEN VSEN2VXSTIM2A:Scaled-down replica of the anodic ISTIM(ISEN),generating the decreasing VOto maintain VDS(=VT,RRVOP=VONVT,LL)for ISTIMregulation35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationA
329、chieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference66 of 80Current Sensing and Regulating Circuits(I-REG)Replica current sources(CSs)replicating VGSand VDSof the CSs in the ASTIM for ISTIMsensingBBST1VGN
330、VONVONVT,LLVGNVONVONVT,LLN:1Cathodic ISTIMISEN1VREF,SENVSEN1CLKIREGENASTIM Lower CSReplica CSSTIM1VGNVT,LLVONVT,LLVGNVT,LLVT,LLVONN:1Anodic ISTIMISEN2VREF,SENVSEN2CLKIREGENASTIM Lower CSReplica CSSTIM2AISTIM Sensing STIM1(VT,LLVON)ISTIM Sensing STIM2A(VT,LLVON)ISTIM Sensing STIM2A(VT,LLVT,LL)during
331、STIM2A Replica CS aligned to that of the CSs in the ASTIM35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise Charge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circ
332、uits Conference68 of 80Outline Introduction Proposed Wireless Neural StimulatorSystem Architecture and Operation PrincipleKey Building Blocks Measurement Results Conclusion35.5:A Wireless Adiabatic Stimulator System with Current-Mode Power Reception and Stimulus Current RegulationAchieving Precise C
333、harge Delivery and Electrode Scalability for Miniaturized Electroceuticals 2025 IEEE International Solid-State Circuits Conference69 of 80Chip Micrograph and Coil Parameters1800m1800mClass-DPATXCTRL1800m800mRX ChipTX ChipASTIMOn-ChipLDOV and I Gen.CTRLISENPower StageTX CoilRX CoilCopperAWG26AWG26Inductance4.258H55nHTurns102Diameter32.5mm8mmQuality Factor1106.78MHz396.78MHz3200m3200mS3BIASS2BSBPGD2