新能源材料行業:范式進階!-230508(144頁).pdf

編號:124946 PDF 144頁 5.24MB 下載積分:VIP專享
下載報告請您先登錄!

新能源材料行業:范式進階!-230508(144頁).pdf

1、2023年5月8日新能源材料:范式進階!行業評級:看好分析師施毅郵箱證書編號S1230522100002證券研究報告添加標題首頁2本報告針對特斯拉2023年4月5日發布的Master Plan Part 3Sustainable Energy for All of Earth(下稱宏圖計劃3)進行細致分析研究,采用“一頁原文,一頁譯文,一頁解讀”的形式展開報告。通過對宏圖計劃3的詳盡分析,我們旨在展示“新能源材料”未來20年巨大的發展機遇與發展范式。根據特斯拉的測算,建設可持續能源經濟的基礎設施將花費10萬億美元,其中:電動汽車工廠需投入1.78萬億美元,電池工廠需投資2.18萬億美元,電動汽

2、車材料開采精煉需投資1.67萬億美元,制氫電解槽與儲氫需1.88萬億美元資本投入??稍偕茉唇洕谖磥韺⑿枰?0TW的裝機、240TWh的電池存儲和6000萬英里輸電線路建設支撐,共需128.15億噸材料投入,將催生700萬噸鋰/年、700萬噸銅/年、300萬噸鎳/年的新能源支柱材料需求,由此對應的資本開支分別為:鋰 3740億美元,銅 2150億美元,鎳 2020億美元。前景極為廣闊,我們預計新能源領域將會出現一批世界級企業?,F有新能源經濟僅是冰山一角,冰層下蘊藏著巨大的機遇!添加標題95%摘要31、總述可持續能源經濟的邏輯假設可持續能源經濟的實現路徑及可行性分析2、現有能源經濟能源利用率低

3、更換一次能源種類轉變終端能源消費方式3、電氣化經濟,消除化石燃料可再生能源供電使用電動汽車住宅、商業和工業中使用熱泵高溫傳熱和氫能電氣化飛機船舶使用可持續燃料重建可持續經濟能源添加標題95%摘要44、建立可持續能源經濟美國完全可持續能源經濟模型發電及儲能技術評估最佳的發電-儲能組合全球可持續能源經濟建模結果5、投資需求完全可再生能源經濟需投資10萬億美元,而維持現有化石燃料經濟則需14萬億美元投資6、空間資源需求全球18.3TW的太陽能電池板組需占陸地面積0.19%全球12.2TW的風力發電渦輪機需占地0.02%7、材料投入需求30TW的裝機、240TWh的電池存儲和6000萬英里輸電線路共需

4、128.15億噸材料鋰/銅/鎳年需求量為700萬噸/700萬噸/300萬噸風險提示51、可再生能源技術突破受限;2、可再生能源經濟替代進程不及預期;3、各國對可再生能源經濟政策激勵不足;4、全球供應鏈體系不穩定性增加;5、翻譯錯誤風險,報告涉及Master Plan Part 3Sustainable Energy for All of Earth等文章譯文,或因語法理解、翻譯有誤、翻譯不完整等原因造成與原表述存在偏差的風險,譯文內容僅供參考,準確內容請詳見原文.目錄C O N T E N T S總述可持續能源經濟的邏輯假設可持續能源經濟的實現路徑及可行性分析010203現有能源經濟能源利用率

5、低更換一次能源種類轉變終端能源消費方式電氣化經濟,消除化石燃料可再生能源供電使用電動汽車住宅、商業和工業中使用熱泵高溫傳熱和氫能電氣化飛機船舶使用可持續燃料重建可持續經濟能源6目錄C O N T E N T S0506投資需求完全可再生能源經濟需投資10萬億美元,而維持現有化石燃料經濟則需14萬億美元投資空間資源需求全球18.3TW的太陽能電池板組需占陸地面積0.19%全球12.2TW的風力渦輪機需占地0.02%707材料投入需求可再生能源經濟將催生巨量新能源材料需求現有材料儲量可滿足未來需求明星業務明星業務04建立可持續能源經濟美國完全可持續能源經濟模型發電及儲能技術評估最佳的發電-儲能組合

6、全球可持續能源經濟建模結果總述01Partone可持續能源經濟的邏輯假設可持續能源經濟的實現路徑及可行性分析8添加標題95%019On March 1,2023,Tesla presented Master Plan Part 3 a proposed path to reach a sustainable global energy economy through end-use electrificationand sustainable electricity generation and storage.This paper outlines the assumptions,sourc

7、es and calculations behind that proposal.Input andconversation are welcome.The analysis has three main components:This paper finds a sustainable energy economy is technically feasible and requires less investment and less material extraction than continuing todaysunsustainable energy economy.While m

8、any prior studies have come to a similar conclusion,this study seeks to push the thinking forward related tomaterial intensity,manufacturing capacity,and manufacturing investment required for a transition across all energy sectors worldwide.原文:Executive Summary添加標題0110譯文:概要電力需求預測一個完全電氣化的經濟體的電力需求,該經濟

9、體在沒有化石燃料的情況下滿足全球能源需求。電力供應構建成本最低的發電和儲能資源組合,以滿足每小時的電力需求。材料可行性&投資確定實現電力經濟的材料需求可行性和實現這一目標必須的制造業投資。2023年3月1日,特斯拉發布宏圖計劃第3部分,提出了一條通過終端電氣化、可持續能源發電和儲能實現可持續全球能源經濟的路徑。本文概述了該提議的假設、來源和計算。歡迎討論。該分析包含了三個主要的部分:本文發現,可持續能源經濟在技術上是可行的,且與當今的不可持續能源經濟相比需要更少的投資和材料開采。雖然之前的許多研究都得出了類似的結論,但本項研究試圖推動與材料強度、制造能力和制造投資相關的思考,這些是全球所有能源

10、部門轉型所需的。240 TWh儲能0.21%所需土地面積30 TW可再生能源10%2022 全球GDP$10T制造投資0無法克服的能源挑戰1/2所需能量現有能源經濟02Partone能源利用率低更換一次能源種類轉變終端能源消費方式11點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題添加標題原文:The Current Energy Economy is Wasteful0212According to the International Energy Agency(IEA)2

11、019 World Energy Balances,the global primary energy supply is 165 PWh/year,and total fossil fuelsupply is 134PWh/year1ab.37%(61PWh)is consumed before making it to the end consumer.This includes the fossil fuel industries self-consumptionduring extraction/refining,and transformation losses during ele

12、ctricity generation.Another 27%(44PWh)is lost by inefficient end-uses such as internalcombustion engine vehicles and natural gas furnaces.In total,only 36%(59PWh)of the primary energy supply produces useful work or heat for theeconomy.Analysis from Lawrence Livermore National Lab shows similar level

13、s of inefficiency for the global and US energy supply2,3.a The 2021 and 2022 IEA World Energy Balances were not complete at the time of this work,and the 2020 dataset showed a decrease in energy consumption from 2019,which likely was pandemic-related and inconsistent with energy consumption trends.b

14、 Excluded certain fuel supplies used for non-energy purposes,such as fossil fuels used in plastics manufacturing.點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題添加標題譯文:現有能源經濟浪費嚴重,能源利用率僅36%0213根據國際能源署(IEA)2019年世界能源平衡,全球一次能源供應量為165 PWh/年,化石燃料總供應量為134PWh/年1ab。37%(61P

15、Wh)在到達最終消費者之前被消耗,包括了化石燃料行業在開采/精煉過程中的損耗以及發電過程中的轉化損失。另外27%(44PWh)在低效的終端用途(如內燃機車輛和天然氣爐)中損耗??偟膩碚f,只有36%(59PWh)的一次能源轉化為有用的功或熱。勞倫斯利弗莫爾國家實驗室(Lawrence Livermore National Lab)的分析顯示,全球和美國的能源供應效率低下程度相似2,3。a 在開展這項工作時,2021年和2022年國際能源署的世界能源平衡尚未完成,2020年的數據集顯示,能源消費較2019年有所下降,這可能與大流行有關,與能源消費趨勢并不一致。b 不包括用于非能源用途的某些燃料供應

16、,如用于塑料制造的化石燃料。資料來源:Tesla-Master Plan Part 3,浙商證券研究所我們的理解0214解決能源利用效率低的問題能量來源能源利用更換一次能源種類轉變終端能源消費方式電氣化經濟消除化石燃料03Partone可再生能源供電使用電動汽車住宅、商業和工業中使用熱泵高溫傳熱和氫能電氣化飛機船舶使用可持續燃料重建可持續經濟能源15點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題添加標題原文:The Plan to Eliminate Fossil Fuel

17、s0316In an electrified economy with sustainably generated energy,most of the upstream losses associated with mining,refining andburning fuels to create electricity are eliminated,as are the downstream losses associated with non-electric end-uses.Someindustrial processes will require more energy inpu

18、t(producing green hydrogen for example),and some mining and refiningactivity needs to increase(related to metals for batteries,solar panels,wind turbines,etc.)The following 6 steps show the actions needed to fully electrify the economy and eliminate fossil fuel use.The 6 steps detail theelectricity

19、demand assumptions for the sustainable energy economy and leads to the electricity demand curve that is modeled.Modeling was done on the US energy economy using high-fidelity data available from the Energy Information Administration(EIA)from 2019-2022c,and results were scaled to estimate actions nee

20、ded for the global economy using a 6x scaling factor based onthe 2019 energy consumption scalar between the U.S.and the world,according to IEA Energy Balances.This is a significantsimplification and could be an area for improvement in future analyses,as global energy demands are different from the U

21、.S.intheir composition and expected to increase over time.This analysis was conducted on the U.S.due to availability of high-fidelityhourly data.This plan considers onshore/offshore wind,solar,existing nuclear and hydro as sustainable electricity generation sources,andconsiders existing biomass as s

22、ustainable although it will likely be phased out over time.Additionally,this plan does not addresssequestering carbon dioxide emitted over the past century of fossil fuel combustion,beyond the direct air capture required forsynthetic fuel generation;any future implementation of such technologies wou

23、ld likely increase global energy demand.c US hourly time series data used as model inputs are available at https:/www.eia.gov/opendata/browser/for download.0317在可持續能源產生的電氣化經濟中,與采礦、精煉和燃燒燃料發電有關的大部分上游損失都被消除了,與非電力最終用途有關的下游損失也被消除了。一些工業過程將需要更多的能源投入(例如生產綠色氫),一些采礦和精煉活動需要增加(與對電池、太陽能電池板、風力渦輪機等金屬需求增加有關)。以下6個步驟

24、展示了全面電氣化經濟和消除化石燃料使用所需的行動。這6個步驟詳細說明了可持續能源經濟的電力需求假設,并進行了電力需求曲線的建模。根據國際能源署能源平衡,使用能源情報署(EIA)提供的2019-2022c年高保真數據對美國能源經濟進行了建模,并根據2019年美國和世界之間的能源消耗標量,使用6倍的比例因子對結果進行了縮放,以估計全球經濟所需的行動。這是一個重要的簡化,也可能是未來分析的一個改進領域,因為全球能源需求的構成與美國不同,并且預計會隨著時間的推移而加劇。由于可以得到美國的高保真小時數據,故基于美國的能源情況建立了該模型。該計劃將陸上/海上風能、太陽能、現有的核能和水力發電視為可持續的發

25、電來源,并認為現有的生物質能是可持續的,盡管它可能會隨著時間的推移而逐步淘汰。此外,除了合成燃料生產所需的直接空氣捕獲之外,該計劃沒有解決過去一個世紀化石燃料燃燒所排放的二氧化碳的封存問題,因此未來任何此類技術的實施都可能增加全球能源需求。譯文:消除化石燃料的計劃c 作為模型輸入的美國每小時時間序列數據可在https:/www.eia.gov/opendata/browser/下載。我們的理解0318現有能源經濟所需化石燃料全面電氣化帶來的效率提升可持續能源經濟的電力需求建模估算的邏輯與過程:提升的效率倍數添加標題原文:1.Repower the Existing Grid with Rene

26、wables0319The existing US hourly electricity demand is modeled as an inflexible baseline demand taken from the EIA4.Four US sub-regions(Texas,Pacific,Midwest,Eastern)are modeled to account for regional variations indemand,renewable resource availability,weather,and grid transmission constraints.This

27、 existing electricaldemand is the baseline load that must be supported by sustainable generation and storage.Globally,65PWh/year of primary energy is supplied to the electricity sector,including 46PWh/year of fossilfuels;however only 26PWh/year of electricity is produced,due to inefficiencies transf

28、orming fossil fuels intoelectricityd.If the grid were instead renewably powered,only 26PWh/year of sustainable generation wouldbe required.d Embedded in the 26 PWh/year is 3.5 PWh/year of useful heat,mostly produced in co-generation power stations,which generate heat and power electricity.0320譯文:1.可

29、再生能源供電現有的美國每小時電力需求是根據EIA4的非柔性基線需求來建模的??紤]到需求、可再生資源可用性、天氣和電網傳輸限制的區域差異,模型中包含了四個美國子區域(德克薩斯、太平洋、中西部、東部)。通過可持續發電和儲能來滿足現有電力需求這一基線負荷。在全球范圍內,每年向電力部門供應的一次能源為65PWh,其中化石燃料為46PWh,但由于化石燃料轉化為電力的效率低,每年只能產生26PWh的電力d。如果電網采用可再生能源發電,每年只需要26PWh的可持續發電。d 26 PWh/年中含有3.5 PWh/年的有用熱,主要來自熱電聯產電站。0321我們的理解數據核算:根據EIA數據,2019年美國各部門

30、消耗的一次能源數量為100477.931 Tbtu,其中電力部門消耗的一次能源數量為37010.897 Tbtu。按照6倍的比例因子縮放后,得到全球消耗的一次能源總量為176PWh/年,其中電力部門消耗的一次能源為65PWh/年。圖:2019年美國消耗一次能源總量及電力部門消耗一次能源(左軸:萬億 Btu)100477.93137010.8970200004000060000800001000001200002019年消耗一次能源總量電力部門消耗一次能源數量資料來源:EIA,浙商證券研究所添加標題原文:2.Switch to Electric Vehicles0322Electric vehi

31、cles are approximately 4x more efficient than internal combustion engine vehicles due to higherpowertrain efficiency,regenerative braking capability,and optimized platform design.This ratio holds true acrosspassenger vehicles,light duty trucks,and Class 8 semis as shown in the Table 1.e Teslas globa

32、l fleet average energy efficiency including Model 3,Y,S and X.f Teslas internal estimate based on industry knowledge.0323譯文:2.使用電動汽車e 按照特斯拉Model 3,Y,S and X四種車型得到,其中Model 3為132 MPGe,Model Y為129 MPGe,Model X為120 MPGe,Model S為102 MPGe.f 由特斯拉根據行業共識估計得到.電動汽車具有更高的動力系統效率、回收制動能量及優化的平臺設計,能源利用效率為內燃機汽車的4倍。下表對

33、比了電動汽車和內燃機汽車在乘用車、輕型載貨車及8級卡車三種車型上的效率。資料來源:Tesla-Master Plan Part 3,浙商證券研究所0324我們的理解單位換算關系:1L汽油熱值=8.9kWh,1加侖汽油=3.785L,1加侖汽油熱值=33.7kWh參數注解:ICE:internal combustion engine,內燃機MPG:miles per gasoline gallon,即每加侖汽油當量英里數MPGe:miles per gallon equivalent,即等效每加侖汽油當量英里數添加標題原文:2.Switch to Electric Vehicles0325As

34、a specific example,Teslas Model 3 energy consumption is 131MPGe vs.a Toyota Corolla with 34MPG6,7,or 3.9xlower,and the ratio increases when accounting for upstream losses such as the energy consumption related extractingand refining fuel(See Figure 4).0326譯文:2.使用電動汽車以特斯拉Model 3和Toyota Corolla作為具體例子說

35、明,Toyota Corolla的能量消耗為34MPGe,特斯拉Model 3的能量消耗為131MPGe6,7,是Toyota的3.9倍,如果考慮到上游化石能源在精煉和提純的損耗,這一比值將更高。資料來源:Tesla-Master Plan Part 3,浙商證券研究所0327我們的理解電動汽車能源經濟性更高電動汽車系統效率更高減少了上游的能量損耗添加標題原文:2.Switch to Electric Vehicles0328To establish the electricity demand of an electrified transportation sector,historica

36、l monthly US transportation petroleumusage,excluding aviation and ocean shipping,for each sub-region is scaled by the EV efficiency factor above(4x)8.Teslas hour by hour vehicle fleet charging behavior,split between inflexible and flexible portions,is assumed as the EVcharging load curve in the 100%

37、electrified transportation sector.Supercharging,commercial vehicle charging,andvehicles with 50%state of charge are considered inflexible demand.Home and workplace AC charging are flexibledemand and modeled with a 72-hour energy conservation constraint,modeling the fact that most drivers have flexib

38、ility tocharge when renewable resources are abundant.On average,Tesla drivers charge once every 1.7 days from 60%SOC to 90%SOC,so EVs have sufficient range relativeto typical daily mileage to optimize their charging around renewable power availability provided there is charginginfrastructure at both

39、 homes and workplaces.Global electrification of the transportation sector eliminates 28 PWh/year of fossil fuel use and,applying the 4x EVefficiency factor,creates 7 PWh/year of additional electrical demand.0329譯文:2.使用電動汽車為了確定電氣化運輸部門的電力需求,將美國各子區域的歷史月度運輸用石油量(除去航空和海運)按上述電動汽車效率是內燃機汽車的4倍進行縮放8。假設將特斯拉每小時的

40、車輛充電行為分為靈活負載和非靈活負載,作為100%電氣化交通領域的電動汽車充電負荷曲線,其中超級充電、商用車輛充電和電量低于50%的車輛為非靈活負載;家庭和工作場所的交流充電是靈活負載,并以72小時節能約束為模型,模擬了大多數車主在可再生資源充足時具有充電靈活性的事實。當電動汽車剩余容量為60%90%時,平均每1.7天充電一次,因此只要在家庭和工作場所都有充電基礎設施,電動汽車就有足夠的續航里程來優化可再生能源的可用性。全球交通運輸行業的電氣化消除了28PWh/年的化石燃料使用,按照4倍的電動汽車效率系數,每年產生約7PWh的額外電力需求。0330我們的理解電動汽車的電力需求全球電動汽車數量日

41、耗電量365 天數據核算:假設:1.全球汽車保有量為15億輛,假設每輛車行駛50km/天;2.轉向電動汽車后,乘用車的MPGe為115;3.計算得到全球電動車的電力需求為5PWh/年。資料來源:前瞻產業研究院,IEA,浙商證券研究所原文:3.Switch to Heat Pumps in Residential,Business&Industry0331Heat pumps move heat from source to sink via the compression/expansion of an intermediate refrigerant9.With theappropriate

42、 selection of refrigerants,heat pump technology applies to space heating,water heating and laundrydriers in residential and commercial buildings,in addition to many industrial processes.0332譯文:3.住宅、商業及工業中使用熱泵熱泵通過中間制冷劑的壓縮/膨脹將熱量從熱源轉移到熱匯9。隨著制冷劑的適當選擇,熱泵技術適用于住宅和商業建筑的空間加熱,水加熱和洗衣烘干機,以及許多工業過程。注:熱匯,資源科學技術名詞,

43、指大氣系統中從周圍獲得熱量,并不斷地消耗熱量的地區。資料來源:Tesla-Master Plan Part 3,浙商證券研究所熱泵工作原理:熱泵有四大關鍵部件:蒸發器、壓縮機、冷凝器、膨脹閥。制冷劑從空氣中吸熱變成低溫低壓的氣體,通過壓縮機變為高溫高壓,在冷凝器中釋放熱量,自身變為液體流向膨脹閥,調節制冷劑的流量再次進入蒸發器,以此循環。熱泵的工作效率:通常熱泵輸出的能量是其消耗電能/燃料能的3-4倍,比燃氣鍋爐更高效。0333我們的理解圖:熱泵及鍋爐的簡化能流資料來源:熱泵市場,未來智庫,浙商證券研究所圖:熱泵的工作原理蒸發器(吸熱,液轉氣)壓縮機(控制氣體)冷凝器(放熱,氣轉液)膨脹閥(控

44、制液體)0334Air source heat pumps are the most suitable technology for retrofitting gas furnaces in existing homes,and candeliver 2.8 units of heat per unit of energy consumed based on a heating seasonal performance factor(HSPF)of 9.5Btu/Wh,a typical efficiency rating for heat-pumps today11.Gas furnaces

45、 create heat by burning natural gas.Theyhave an annual fuel utilization efficiency(AFUE)of 90%12.Therefore,heat pumps use 3x less energy than gasfurnaces(2.8/0.9).原文:3.Switch to Heat Pumps in Residential,Business&Industry0335譯文:3.住宅、商業及工業中使用熱泵空氣源熱泵是最適合改造現有家庭燃氣爐的技術,根據9.5 Btu/Wh的供暖季節性能系數(HSPF),每消耗單位能量

46、可以提供2.8單位的熱量,這是目前熱泵常見的效率值11。而煤氣爐通過燃燒天然氣產生熱量,其年燃料利用效率(AFUE)約為90%12。因此,熱泵使用的能量比燃氣爐少大約3倍(2.8/0.9)。資料來源:Tesla-Master Plan Part 3,浙商證券研究所0336參數注解:HSPF:季節供熱性能系數,即供熱季節熱泵總的制熱量供熱季節熱泵總的輸入能量AFUE:年燃料利用效率,即年輸出熱量/年消耗化石燃料。COP:制熱性能系數,即壓縮機的制熱量與輸入功率(消耗的電能or燃料能)的比值,COP越大,熱泵系統的效率越高。HSPF和COP的換算:1 Btu=1055.1 J1 J=3600 Wh

47、1 Btu=0.293 Wh我們的理解0337Residential and Commercial SectorsThe EIA provides historical monthly US natural gas usage for the residential and commercial sectors in each sub-region8.The 3x heat-pumpefficiency factor reduces the energy demand if all gas appliances are electrified.The hourly load factor of

48、 baseline electricity demand wasapplied to estimate the hourly electricity demand variation from heat pumps,effectively ascribing heating demand to those hours when homesare actively being heated or cooled.In summer,the residential/commercial demand peaks mid-afternoon when cooling loads are highest

49、,inwinter demand follows the well-known“duck-curve”which peaks in morning&evening.Global electrification of residential and commercial appliances with heat pumps eliminates 18 PWh/year of fossil fuel and creates 6PWh/yearof additional electrical demand.原文:3.Switch to Heat Pumps in Residential,Busine

50、ss&Industry0338譯文:3.住宅、商業及工業中使用熱泵住宅和商業部門:美國能源信息署提供了美國每個子區域的住宅和商業部門的月度天然氣使用歷史數據8。由于熱泵效率為燃氣爐的3倍,如果將所有燃氣器具電氣化,可減少能源需求。將基線電力需求的小時負荷系數作為估計熱泵的小時電力需求變化,且供熱制冷需求變化與家庭供暖制冷的時間變化高度一致。在夏季,住宅/商業的冷卻負荷需求在下午達到峰值,在冬季,住宅/商業的供熱負荷需求則遵循著名的“鴨子曲線”,在早晨和晚上達到峰值。全球住宅/商業建筑使用熱泵每年將減少18 PWh的化石燃料,以熱泵效率為燃氣爐的3倍計算,產生6PWh/年的電力需求。資料來源:T

51、esla-Master Plan Part 3,浙商證券研究所0339我們的理解數據核算:根據EIA數據,2019年美國商業和住宅消耗化石燃料數量為10773.543 TBtu,按照6倍的比例因子縮放后,得到全球商業和住宅消耗化石燃料數量為19PWh/年。圖:2019年美國商業和住宅消耗化石燃料數量(左軸:萬億 Btu)4520.7696252.774010002000300040005000600070002019年商業部門住宅部門資料來源:EIA,浙商證券研究所0340Industrial SectorIndustrial processes up to 200C,such as food

52、,paper,textile and wood industries can also benefit from the efficiency gains offered by heatpumps13,although heat pump efficiency decreases with higher temperature differentials.Heat pump integration is nuanced and exactefficiencies depend heavily on the temperature of the heat source the system is

53、 drawing from(temperature rise is key in determining factor forheat pump efficiency),as such simplified assumptions for achievable COP by temperature range are used:Based on the temperature make-up of industrial heat according to the IEA and the assumed heat pump efficiency by temperature in Table 2

54、,the weighted industrial heat pump efficiency factor modeled is 2.214,15,16.The EIA provides historical monthly fossil fuel usage for the industrialsector for each sub-region8.All industrial fossil fuel use,excluding embedded fossil fuels in products(rubber,lubricants,others)is assumed tobe used for

55、 process heat.According to the IEA,45%of process heat is below 200C,and when electrified with heat pumps requires 2.2x lessinput energy16.The added industrial heat-pump electrical demand was modeled as an inflexible,flat hourly demand.Global electrification of industrial process heat 200 C200C),acco

56、unt for the remaining 55%of fossil fuel use and requirespecial consideration.This includes steel,chemical,fertilizer and cement production,among others.These high-temperatureindustrial processes can be serviced directly by electric resistance heating,electric arc furnaces or buffered through thermal

57、storage to take advantage of low-cost renewable energy when it is available in excess.On-site thermal storage may bevaluable to cost effectively accelerate industrial electrification(e.g.,directly using the thermal storage media and radiativeheating elements)17,18.Identify the optimal thermal storag

58、e media by temperature/application0345譯文:4.高溫傳熱和氫能的電氣化根據溫度/應用確定最佳的儲熱介質輸入:通過電力,蒸汽,熱空氣等加熱儲熱介質輸出:通過加熱其他物質冷卻儲熱介質熱電池能量=熱電池質量*單位熱容量*溫度變化高熱工業過程的電氣化除了低于200C的工業過程,剩余55%的化石燃料則用于高于200C的工業過程,如鋼鐵、化工、化肥和水泥生產等,需要單獨考慮。這些工業過程所需的高溫可以直接通過電阻加熱或電弧爐提供,也可以通過儲熱系統在可再生能源過剩時將這種低成本的能量儲存起來作為緩沖,在工業過程所需時為其供熱。直接使用儲熱介質和輻射熱元素實現就地儲熱對

59、于加速工業過程電氣化是經濟有效的17,18。0346Delivering Heat to High Temperature Processes原文:4.Electrify High Temperature Heat Delivery and Hydrogen Production0347向高溫過程傳遞熱量:水熔鹽空氣蒸汽熔鹽(最高達550度)空氣(最高達2000+度)水蒸發熔鹽加熱空氣加熱待加熱流體可傳熱的熱流體直接熱輻射到產品熱傳導過程熱輻射過程譯文:4.高溫傳熱和氫能的電氣化0348熔鹽儲熱過程:熔鹽通過塔頂的太陽能接收器被加熱到約565C,隨后流入熱儲罐中。當需要熱能時,熔鹽被輸送到熱交

60、換器中,加熱水產生蒸汽以帶動渦輪機發電,同時熔鹽冷卻到約300度回到冷儲罐中,然后再次進入太陽能接收器被加熱。常見熔鹽體系:Solar salt:二元共晶硝酸鹽(60wt%NaNO3-40wt%KNO3),熔點為221C,在565C下高溫熱穩定性較好;Hitec:三元共晶硝酸鹽(53wt%KNO3-7wt%NaNO3-40wt%NaNO2),熔點為142C,在454C下高溫熱穩定性較好;我們的理解資料來源:Sandia National Laboratories,浙商證券研究所0349Electric resistance heating,and electric arc furnaces,h

61、ave similar efficiency to blast furnace heating,therefore will require a similar amount ofrenewable primary energy input.These high-temperature processes are modeled as an inflexible,flat demand.Thermal storage is modeled as an energy buffer for high-temperature process heat in the industrial sector

62、,with a round trip thermal efficiencyof 95%.In regions with high solar installed capacity,thermal storage will tend to charge midday and discharge during the nights to meetcontinuous 24/7 industrial thermal needs.Figure 9 shows possible heat carriers and illustrates that several materials are candid

63、ates forproviding process heat 1500C.Global electrification of industrial process heat 200C eliminates 9PWh/year of fossil fuel fuels and creates 9PWh/year of additional electricaldemand,as equal heat delivery efficiency is assumed.原文:4.Electrify High Temperature Heat Delivery and Hydrogen Productio

64、n0350譯文:4.高溫傳熱和氫能的電氣化電阻加熱和電弧爐與燃氣爐加熱的效率相近,因此對可再生一次能源的需求量相似,作為固定且平坦的需求建模。儲熱系統被建模為工業部門高溫過程熱量的能量緩沖器,熱效率為95%。在太陽能裝機容量較大的地區,蓄熱系統在中午充電,晚上放電,以滿足24/7連續的工業熱需求。下圖列出了可能的熱載體,其中幾種材料可用于提供高于1500度的工藝熱。使用儲熱系統實現200工業過程熱的全球電氣化,消除了9PWh/年的化石燃料,在傳熱效率相同的假設下,將創造9PWh/年的電力需求。資料來源:Tesla-Master Plan Part 3,浙商證券研究所0351我們的理解碳作為儲熱

65、介質的優勢:1.原材料成本低:碳塊是最便宜的大體積儲熱材料,來源于其他工業過程的副產品。2.產量豐富:用于金屬工業的碳塊年產量約為3000萬噸/年,即使是現有供應鏈的一小部分,也足以建立每年TWh的儲能能力。3.優異的熱性能和機械性能:碳的高溫比熱容比大多數傳統儲熱材料高30%-70%,且具有高導電性、機械強度和循環壽命。4.極端溫度穩定性:碳是現存的熱穩定性最好的材料之一,在3000C以上仍保持固體狀態,是鋼鐵熔化溫度的2倍,較高的工作溫度能實現巨大的能量密度,也意味著更小的占地面積。資料來源:Antora Energy,浙商證券研究所0352我們的理解數據核算:根據EIA數據,2019年工

66、業消耗化石燃料數量為20511.057 TBtu,其中200C以上的工業過程占比55%,按照6倍的比例因子縮放后,得到全球200C以上的工業過程消耗化石燃料數量為20PWh/年。同時,根據IEA提供的2018年全球按照溫度劃分的工業熱需求,200C以下的工業過程需47.8EJ,折算為13.3PWh;200C以上的工業過程需60.1EJ,折算為16.7PWh。圖:2018年按照溫度劃分的工業熱需求資料來源:IEA,EIA,浙商證券研究所0353Sustainably Produce Hydrogen for Steel and FertilizerToday hydrogen is produc

67、ed from coal,oil and natural gas,and is used in the refining of fossil fuels(notably diesel)and invarious industrial applications(including steel and fertilizer production).Green hydrogen can be produced via the electrolysis of water(high energy intensity,no carbon containing productsconsumed/produc

68、ed)or via methane pyrolysis(lower energy intensity,produces a solid carbon-black byproduct that could beconverted into useful carbon-based products)g.To conservatively estimate electricity demand for green hydrogen,the assumption is:No hydrogen will be needed for fossil fuel refining going forward S

69、teel production will be converted to the Direct Reduced Iron process,requiring hydrogen as an input.Hydrogen demandto reduce iron ore(assumed to be Fe3O4)is based on the following reduction reaction:Reduction by H2 Fe3O4+H2=3FeO+H2O FeO+H2=Fe+H2O All global hydrogen production will come from electro

70、lysisg Sustainable steel production may also be performed through molten oxide electrolysis,which requires heat and electricity,but does not require hydrogen as areducing agent,and may be less energy intensive,but this benefit is beyond the scope of the analysis19.原文:4.Electrify High Temperature Hea

71、t Delivery and Hydrogen Production0354譯文:4.高溫傳熱和氫能的電氣化g 可持續的鋼鐵生產也可以通過熔融氧化物電解進行,這需要熱量和電力,但不需要氫作為還原劑,并且可能不那么耗能,但這種好處超出了分析的范圍。用于鋼鐵和化肥的氫氣的可持續生產當前氫是從煤、石油和天然氣中產生的,并用于精煉化石燃料(尤其是柴油)和各種工業過程(如生產鋼鐵和化肥)。綠氫可以通過電解水(高能量密度,不消耗/生產含碳產品)或通過甲烷熱解(低能量密度,產生的固體炭黑副產品可轉化為有用的碳基產品)得到g。為估計生產綠氫的保守電力需求,做出如下假設:未來的化石燃料精煉不再需要氫氣鋼鐵生產將

72、轉變為直接還原鐵工藝,使用氫氣還原,還原鐵礦石的方程式如下:使用氫氣還原:Fe3O4+H2=3FeO+H2O FeO+H2=Fe+H2O全球所有的氫氣都來自電解過程0355我們的理解氫氣制取方法:主要分為化石燃料制氫、工業副產制氫及可再生能源制氫,當前我國氫氣主要采用化石燃料制取?;剂暇珶捰脷洌耗壳盁捰推髽I采用的加氫工藝主要有加氫精制和加氫裂化兩大類。加氫精制:可將油品中的硫、氧、氮等有害雜質轉變為相應的硫化氫、水、氨而除去,并使烯烴和二烯烴加氫飽和、芳烴部分加氫飽和,以改善油品的質量。主要用于各種來源的汽油、煤油、柴油、催化重整原料、潤滑油、石蠟油的精制,噴氣燃料中芳烴的部分加氫飽和,燃

73、料油的加氫脫硫,渣油脫重金屬及脫瀝青預處理等。加氫裂化:主要用來生成高質量的輕質油品,如柴油、航煤、汽油等。鋼鐵生產:碳冶金轉向氫冶金碳冶金:2Fe2O3+3C=4Fe+3CO2氫冶金:Fe3O4+4H2=3Fe+4H2O圖:2020-2050氫氣的主要來源圖:氫氣用于生產鋼鐵圖:氫氣在煉油中的應用資料來源:中商情報網,煉油企業氫氣系統優化研究及應用,界面新聞,浙商證券研究所0356These simplified assumptions for industrial demand,result in a global demand of 150Mt/yr of green hydrogen,

74、andsourcingthisfromelectrolysisrequiresanestimated7.2PWh/yearofsustainablygeneratedelectricityh,20,21.The electrical demand for hydrogen production is modeled as a flexible load with annual productionconstraints,with hydrogen storage potential modeled in the form of underground gas storage facilitie

75、s(likenatural gas is stored today)with maximum resource constraints.Underground gas storage facilities used todayfor natural gas storage can be retrofitted for hydrogen storage;the modeled U.S.hydrogen storage requires30%of existing U.S.underground gas storage facilities22,23.Note that some storage

76、facilities,such as saltcaverns,are not evenly geographically dispersed which may present challenges,and there may be betteralternative storage solutions.Global sustainable green hydrogen eliminates 6 PWh/year of fossil fuel energy use,and 2 PWh/year of non-energy usei,24.The fossil fuels are replace

77、d by 7PWh/year of additional electrical demand.h Adjusted current demand for hydrogen,removing demand related to oil refining,as that will not be required.Assumed all of the hydrogen produced from coal andnatural gas today is replaced.Then,the energy required to produce the hydrogen from coal and na

78、tural gas,compared to electrolysis,is calculated.i According to the IEA,85%of natural gas non-energy consumption is consumed by fertilizer and methanol production原文:4.Electrify High Temperature Heat Delivery and Hydrogen Production0357譯文:4.高溫傳熱和氫能的電氣化通過對工業用氫的簡化假設,得到全球對綠氫的需求為1.5億噸/年,每年需要約7.2PWh的可再生電力

79、電解得到h,20,21。將產氫的電力需求建模為具有年度生產約束的柔性負載,儲氫潛力建模為具有最大資源約束的地下儲氣設施(即目前天然氣儲存)的形式。目前用于天然氣儲存的地下儲氣設施可以改造為儲氫設施,模型中美國氫氣儲存需要約30%現有美國地下天然氣儲存設施22,23,但由于儲存設施如鹽穴在地理上并非均勻分布,會為儲氫帶來挑戰,可能存在更好的其他存儲解決方案??沙掷m綠氫消除了全球6PWh/年的化石燃料在能源領域的應用和2PWh/年的非能源應用i,24,創造了每年7PWh的額外電力需求。h 調整了目前對氫氣的需求,取消了與煉油相關的需求,因為這將不再需要。假設今天所有由煤和天然氣產生的氫都被取代。然

80、后,計算從煤和天然氣中生產氫氣所需的能量,并將其與電解相比較。i 根據國際能源署的數據,85%的天然氣非能源消耗被化肥和甲醇生產所消耗。0358數據核算:1.假設簡化中工業生產用氫只包含了鋼鐵生產:(當前氫氣的工業應用:精煉石油、合成氨和甲醇、冶煉金屬等;未來氫冶金是主要的下游應用)2.對生產鋼鐵所需的還原劑綠氫的電力需求估算:2022年全球鋼產量:18.785億噸,生產1噸生鐵需要氫氣1000標準立方米,即89.3kg,則生產18.785億噸生鐵需要氫氣1.67億噸,當前電解1kg氫氣耗電量為48KWh,則產生電力需求8.0PWh。3.使用綠氫替代煤炭作為生產鋼鐵的還原劑能消除的化石燃料數量

81、:生產1噸生鐵需要400kg煤炭,1噸煤炭約產8141KWh的電力,則生產18.785億噸生鐵需6.1PWh化石燃料。4.根據EIA數據,2019年美國消耗非燃燒用的天然氣1.158744QBtu,按照6倍的比例因子縮放后,得到全球消耗非燃燒用的天然氣2.0PWh。資料來源:世界鋼鐵協會,EIA,日本鋼鐵協會,特斯拉,浙商證券研究所我們的理解原文:5.Sustainably Fuel Planes&Boats 0359Both continental and intercontinental ocean shipping can be electrified by optimizing des

82、ign speed and routes to enable smallerbatteries with more frequent charge stops on long routes.According to the IEA,ocean shipping consumes 3.2PWh/year globally.Byapplying an estimated 1.5x electrification efficiency advantage,a fully-electrified global shipping fleet will consume 2.1PWh/year ofelec

83、tricity25.Short distance flights can also be electrified through optimized aircraft design and flight trajectory at todays battery energydensities26.Longer distance flights,estimated as 80%of air travel energy consumption(85B gallons/year of jet fuel globally),can bepowered by synthetic fuels genera

84、ted from excess renewable electricity leveraging the Fischer-Tropsch process,which uses amixture of carbon monoxide(CO)and hydrogen(H2)to synthesize a wide variety of liquid hydrocarbons,and has been demonstratedas a viable pathway for synthetic jet fuel synthesis27.This requires an additional 5PWh/

85、year of electricity,with:-H2generated from electrolysis21-CO2captured via direct air capture28,29-CO produced via electrolysis of CO2Carbon and hydrogen for synthetic fuels may also be sourced from biomass.More efficient and cost-effective methods for syntheticfuel generation may become available in

86、 time,and higher energy density batteries will enable longer-distance aircraft to be electrifiedthus decreasing the need for synthetic fuels.The electrical demand for synthetic fuel production was modeled as a flexible demand with an annual energy constraint.Storage ofsynthetic fuel is possible with

87、 conventional fuel storage technologies,a 1:1 volume ratio is assumed.The electrical demand for oceanshipping was modeled as a constant hourly demand.Global sustainable synthetic fuel and electricity for boats and planes eliminates 7PWh/year of fossil fuels,and creates 7PWh/year ofadditional global

88、electrical demand.0360譯文:5.可持續燃料飛機和船只通過優化設計速度和路線,大陸和洲際遠洋運輸的電氣化可以通過在長途航線上使用容量更小的電池但更頻繁地??砍潆妬韺崿F。根據IEA的數據,全球遠洋運輸消耗電力3.2PWh/年。如果電氣化后能源利用效率是原來的1.5倍,則全球船隊的完全電氣化將消耗2.1PWh/年的電力25。在今天的電池能量密度下,通過優化飛機設計和飛行軌跡,短途飛行也可以實現電氣化26。全球每年消耗的航空燃料為850億加侖,其中長途飛行消耗了其中的80%。長途飛行可以通過利用費托工藝從多余的可再生電力中產生的合成燃料來提供動力,該工藝使用CO和H2混合物合成各

89、種液態碳氫化合物,并已經被證實是合成航空燃料的可行途徑27,且需要額外的5PWh/年的電力,包括:電解產生的H221通過直接空氣捕獲CO228,29通過電解CO2產生的CO用于合成燃料的碳和氫也可以來自生物質。更高效、更具成本效益的合成燃料生產方法遲早會出現,而更高能量密度的電池將使長途飛行實現電氣化,從而減少對合成燃料的需求。將合成燃料的電力需求建模為具有年度能源約束的柔性需求,遠洋運輸的電力需求被建模為一個恒定的小時需求。假設使用可持續法合成的燃料與傳統方法合成的燃料體積比為1:1,可使用傳統的燃料儲存技術。全球船舶和飛機燃料的可持續合成及電氣化消除了7PWh/年的化石燃料,并創造了7PW

90、h/年的額外全球電力需求。0361我們的理解船只電氣化:電池數據核算:電力需求=化石燃料產生的電力/效率比例因子;飛機電氣化:綠氫+CO合成航空煤油數據核算:電力需求=電解氫氣所需的電力,(2n+1)H2+nCO=CnH2n+2+nH2O0362動力電池重量 vs 船舶重量:電動船的關鍵技術限制是電池系統和電動機與內燃機船發電機和燃料儲存的相對體積、重量大小。1)假設一艘航程5000km的巴拿馬型貨船裝配5GWh的磷酸鐵鋰電池,能量密度為260Wh/kg,則電池重量為2萬噸,會增加1m的吃水深度;該貨船載重5-8萬噸,按照3:1的載重比,自重約為2萬噸。2)左圖描述了不同載重的船舶在不同航程下

91、,電氣化后電池體系與原有內燃機體系的體積大小,其中a圖假設船舶裝配的鋰電池體積能量密度為470Wh/L,b圖假設鋰電池體積能量密度為1200Wh/L。a圖中,當小型巴拿馬貨船的航程低于3000km時,電池體系的體積小于現有內燃機和燃料罐所需體積。但當航程達到20000km時,電池將占據船載重的32%。b圖中根據船舶的載重不同,對應航程在2000-5000km內電池體系的體積小于現有內燃機和燃料罐所需體積。結論:電池體系占貨船總載重的比例隨著電池能量密度提升、航程減少、運載能力增大而減小。圖:不同載重和航程下船舶電氣化后電池體系與原有內燃機體系的體積大小關系我們的理解資料來源:Rapid bat

92、tery cost declines accelerate the prospects of all-electric interregional container shipping,浙商證券研究所0363電動船成本 vs 油船成本:建模假設:1)貨船種類:新型巴拿馬貨船,載重7650TEU,平均航程1565km。2)油船:使用極低硫燃油(0.5%硫含量),考慮燃料、運維、空氣污染物排放成本。3)電動船:考慮電力、運維、空氣污染物排放、電池組的原始和更換成本、減少的載貨量機會成本、充電設備成本。圖:當前油船成本圖:當前電動船成本圖:未來油船成本圖:未來電動船成本當前:假設電池成本為$100/

93、kWh,體積能量密度為470Wh/L,充電設施利用率為50%,電價為$0.035/kWh,油船成本為$0.048/kWh;若不考慮空氣污染成本,當前電動船成本比油船成本高$39/km。未來:假設電池成本為$50/kWh,體積能量密度為1200Wh/L,充電設施利用率為70%,電價為$0.035/kWh,油船成本為$0.075/kWh(考慮每噸CO2排放稅價為$100);若不考慮空氣污染成本,則電動船成本比油船成本低$52/km。我們的理解資料來源:Rapid battery cost declines accelerate the prospects of all-electric inter

94、regional container shipping,浙商證券研究所0364左圖描述了在不包括環境成本時,當前和未來電動船和油船的TCP,其中紅線代表油船,綠線代表電動船,實線代表當前情景,虛線代表未來情景。在當前情境下,當航程小于1000km時,電動船具有成本優勢;未來情境下,考慮油船成本上升及電池能量密度提升、成本下降,當航程小于3300km時,電動船具有成本優勢。電池電動船與內燃機船在更遠航程上的成本平價的主要限制因素是電池成本。若使一艘續航里程為10000公里的電動船具有成本效益,對應的電池價格需降低到$20/kWh。圖:電動船和油船的單位成本對比我們的理解資料來源:Rapid ba

95、ttery cost declines accelerate the prospects of all-electric interregional container shipping,浙商證券研究所0365下圖描述了在不包括環境成本時,當前(a)和未來(b)情境下八種不同載貨量的電動船和油船在0-22000km航程內的TCP,差值為正表示電動船具有成本優勢。當貨船載重量增加、航程變長,電動船的成本劣勢變得明顯,表明在中短途區域內逐步使用電動航船存在一定的經濟效益,而要實現大型遠航船舶成本經濟的電氣化則存在挑戰。圖:不同類型及不同航程下電動船和油船的成本差異我們的理解資料來源:Rapid b

96、attery cost declines accelerate the prospects of all-electric interregional container shipping,浙商證券研究所0366Additional electricity is required to build the generation and storage portfolio-solar panels,wind turbines and batteries-required for the sustainable energy economy.This electricity demand was

97、modeled as an incremental,inflexible,flat hourlydemand in the industrial sector.More details can be found in the Appendix:Build the Sustainable Energy Economy-Energy Intensity.Manufacturing the batteries,solar panels,and wind turbines in the sustainable energy economy itself requires 4PWh/yearof sus

98、tainable power.To arrive at power demand,the energy intensity of manufacturing is estimated as shown in thefigures below:原文:6.Manufacture the Sustainable Energy Economy ff Energy intensity of graphite is used as a proxy for thermal batteriesgg Internal estimateff 熱電池的能量密度以石墨作為參考gg 內部估計0367譯文:6.構建可持續

99、能源經濟建立可持續能源經濟所需的發電和儲能組合(太陽能電池板、風力渦輪機和電池)需要額外的電力。這種電力需求被建模為工業部門不靈活、固定的增量小時需求。詳情請參閱附錄:建立可持續能源經濟-能量密度。在可持續能源經濟中,制造電池、太陽能電池板和風力渦輪機本身需要4PWh/年的可持續電力。為了計算電力需求,制造業的能量密度估計如下圖所示:資料來源:Tesla-Master Plan Part 3,浙商證券研究所0368我們的理解能源下游應用采用的技術消除化石燃料/PWh可再生電力需求/PWh電網可再生能源供電4626使用電動汽車電池287住宅和商業建筑熱泵186工業熱(200C)儲熱系統99工業用

100、氫電解水制氫87飛機使用可持續燃料綠氫+CO77船舶使用可持續燃料電池構建可持續經濟能源發電-儲能/4資料來源:Tesla-Master Plan Part 3,浙商證券研究所對可持續能源經濟建模04Partone美國完全可持續能源經濟模型發電及儲能技術評估最佳的發電-儲能組合690470Modeled Regions and Grid Interconnections原文:Modeling the Fully Sustainable Energy Economy0471譯文:對完全可持續能源經濟建模建模中的各區域及電網資料來源:Tesla-Master Plan Part 3,浙商證券研究所

101、原文:Modeling the Fully Sustainable Energy Economy0472These 6 steps create a U.S.electrical demand to be fulfilled with sustainable generation and storage.To do so,thegeneration and storage portfolio is established using an hourly cost-optimal integrated capacity expansion and dispatchmodelj.The model

102、 is split between four sub-regions of the US with transmission constraints modeled between regions andrun over four weather-years(2019-2022)to capture a range of weather conditionsk.Interregional transmission limits areestimated based on the current line capacity ratings on major transmission paths

103、published by North American ElectricityReliability Council(NERC)Regional Entities(SERC30,WECC31,ERCOT32).Figure 11 shows the fully electrified economyenergy demand for the full US.j Convex optimization models that can determine optimal capacity expansion and resource dispatch are widely used within

104、the industry.For instance,by utilities orsystem operators to plan their systems(e.g.,generation and grid investments required to meet their expected load),or to assess the impact of specific energypolicies on the energy system.This model builds the least-cost generation and storage portfolio to meet

105、 demand every hour of the four-year period analyzed anddispatches that portfolio every hour to meet demand.The capacity expansion and dispatch decisions are optimized in one step,which ensures the portfolio isoptimal over the period analyzed,storage value is fully reflected and the impact of weather

106、 variability modeled.Other analyses typically model capacity expansionand portfolio dispatch as two separate steps.The capacity expansion decisions are made first(e.g.how much generation and storage is estimated to be the least-cost portfolio over the time horizon),followed by separate dispatch mode

107、ling of the portfolio mix(e.g.how much generation and storage should be dispatched ineach hour to meet demand with sufficient operating reserves).The two-stage approach produces pseudo-optimal results,but allows more computationallyintensive models at each stage.k The model is constrained to meet a

108、15%operating reserve margin every hour to ensure this generation and storage portfolio is robust to a range of weather andsystem conditions beyond those explicitely modeled.0473譯文:對完全可持續能源經濟建模j 凸優化模型可以確定最優的容量擴張和資源分配,在業界得到了廣泛的應用。例如,由公用事業公司或系統運營商來規劃他們的系統(例如滿足其預期負荷的發電和電網投資),或評估特定能源政策對能源系統的影響。該模型建立了成本最低

109、的發電和儲能組合,以滿足所分析的四年期間每小時的需求,并在每個小時調度該組合以滿足需求。容量擴展和調度決策是一步優化的,這確保了在分析期間的投資組合是最優的,儲能價值得到充分反映,并對天氣變化的影響進行建模。其他分析通常將容量擴展和投資組合調度建模為兩個獨立的步驟。首先做出容量擴展決策(例如在一段時間內估計多少發電和儲能是成本最低的投資組合),然后對投資組合進行單獨的調度建模(例如每小時應調度多少發電和儲能以滿足有充足運營儲備的需求)。這種兩步法將產生偽最優結果,但在每個階段可以允許更多的計算密集型模型。k 在已明確的建模條件之外,該模型必須滿足每小時15%的運行儲備余量,以確保發電和儲能組合

110、能夠適應各種天氣和系統條件。通過這6個步驟創造了美國的電力需求,且可以通過可持續的發電和儲能來滿足。為此,采用每小時成本最優的集成容量擴張和調度模型建立發電和儲能組合j。該模型分為美國的四個子區域,在不同區域之間建立傳輸約束模型,并在2019-2022年運行以捕捉一系列天氣條件k。區域間輸電限制是根據北美電力可靠性委員會(NERC)區域實體(SERC30,WECC31,ERCOT32)公布的主要輸電路徑的當前線路容量額定值估計的。P75頁的圖顯示了整個美國完全電氣化經濟的能源需求。0474原文:Modeling the Fully Sustainable Energy Economy0475譯

111、文:對完全可持續能源經濟建模資料來源:Tesla-Master Plan Part 3,浙商證券研究所0476原文:Modeling the Fully Sustainable Energy EconomyWind and solar resources for each region are modeled with their respective hourly capacity factor(i.e.,how muchelectricity is produced hourly per MW of installed capacity),its interconnection cost

112、and the maximum capacity available forthe model to build.The wind and solar hourly capacity factors specific to each region were estimated using historicalwind/solar generation taken from EIA in each region,thus capturing differences in resource potential due to regionalweather patternsl,m.Capacity

113、factors were scaled to represent forward looking trends based on the recent Princeton Net-Zero America study33.Figure 12 shows the hourly capacity factor for wind&solar versus time for the full US.Table 3shows the average capacity factor and demand for each region of the US.l EIA does not report off

114、shore wind production for the period analyzed given the limited existing offshore wind installed capacity.The offshore wind generation profilewas estimated by scaling the historical onshore wind generation profile to the offshore wind capacity factor estimated by the Princeton Net-Zero America study

115、.m Each region is modeled with two onshore wind and two solar resources with different capacity factor,interconnection cost and maximum potential.This accountsfor the fact that the most economic sites are typically built first and subsequent projects typically have lower capacity factors and/or high

116、er interconnection cost asthey may be farther located from demand centers requiring more transmission or in locations with higher cost land.0477譯文:對完全可持續能源經濟建模l 鑒于現有海上風電裝機容量有限,EIA沒有報告所分析期間的海上風電產量。通過將歷史陸上風力發電剖面與普林斯頓凈零美國研究估計的海上風電容量因子進行換算,估算出海上風力發電曲線。m 每個區域都用兩種不同容量系數、電網互連成本和最大容量潛力的陸上風能和太陽能資源建模。這解釋了這樣一個

117、事實,即最經濟的站點通常是首先建造的,而隨后的項目可能因為位于離需要更多輸電需求中心更遠的地方或土地成本更高的地方而通常具有較低的容量系數和較高的互連成本。每個地區的風能和太陽能資源是根據各自的小時容量系數(即每兆瓦裝機容量每小時產生多少電力)、電網互連成本和模型可構建的最大容量進行建模。利用EIA發布的歷史風能/太陽能發電量估計了每個地區特有的風能和太陽能小時發電量系數,從而捕捉到了由于區域天氣模式造成的資源潛力差異l,m。根據普林斯頓大學最近的美國凈零排放研究33,對產能因素進行了縮放,以預測未來趨勢。P79頁的圖顯示了整個美國風能和太陽能的小時容量系數與時間的關系,P79頁的表列出了美國

118、每個地區的平均容量系數和需求。0478原文:Modeling the Fully Sustainable Energy Economy0479譯文:對完全可持續能源經濟建模資料來源:Tesla-Master Plan Part 3,浙商證券研究所0480原文:Modeling the Fully Sustainable Energy EconomyThe model builds generation and storage based on resource-specific cost and performance attributes,and a globalobjective of m

119、inimizing the levelized cost of energyn.The model assumes increased inter-regional transmission capacitieso.To provide reliable year-round power,it is economically optimal to deploy excess solar and wind capacity,which leads tocurtailment.Curtailment will happen when(1)solar and/or wind generation i

120、s higher than the electricity demand in a region,(2)storage is full and(3)there is no available transmission capacity to transmit the excess generation to other regions.There is an economic tradeoff between building excess renewable generation capacity,building grid storage,or expandingtransmission

121、capability.That tradeoff may evolve as grid storage technologies mature,but with the assumptions modeled,the optimal generation and storage portfolio resulted in 32%curtailment.n Costs considered in the objective function:levelized capex of new generation and storage with a 5%discount rate,fixed and

122、 variable operational andmaintenance(O&M)costs.o 37 GW of transmission capacity is modeled between the Midwest and the East,28 GW between T exas and the East,24 GW between Pacific and the Midwestand 20 GW between T exas and the Midwest.This corresponds to 3%of the modeled combined regional peak load

123、.E.g.,the peak load of the combined East andMidwest regions was 1.2 TW,and the transmission capacity between Midwest and the East modeled as 37 GW.Currently,the transmission capacity is 1%ofthe combined regional peak loads(with transmission to/from T exas the lowest).Higher transmission capacities g

124、enerally reduce the total generation and storagebuildout,but there is an economic tradeoff between building more transmission and building more generation plus storage.0481譯文:對完全可持續能源經濟建模n 目標函數中考慮的成本:以5%的貼現率平衡新一代和存儲的資本支出,固定和可變的運營和維護成本。o中西部和東部之間的輸電容量為37GW,德克薩斯州和東部之間的輸電容量為28GW,太平洋和中西部之間的輸電容量為24GW,德克薩斯

125、州和中西部之間的輸電容量為20GW,各區域輸電容量相當于模型綜合區域峰值負荷的3%。例如,東部和中西部合并地區的峰值負荷為1.2 TW,中西部和東部之間的輸電容量為37GW。目前,輸電容量小于區域峰值負荷總和的1%(其中德克薩斯州的輸電量最低)。更高的輸電容量通常會減少總發電量和儲能的建設,但在建設更多的輸電和建設更多的發電加儲能之間存在經濟權衡。該模型基于特定資源的成本、性能屬性以及最小化能源平均成本的全球目標來構建發電和儲能組合n。該模型假定了區域間輸電能力也會增加o。為了提供可靠的全年電力,部署過剩的太陽能和風能是經濟上最優的,但這也導致了棄電現象:(1)當太陽能和/或風能發電量高于一個

126、地區的電力需求,(2)達到儲能容量最大值,(3)沒有可用的輸電能力將多余的發電量傳輸到其他地區時。在建設過剩的可再生能源發電能力、電網儲能或擴大輸電能力之間存在經濟權衡。隨著電網儲能技術的成熟,這種權衡可能會發生變化,但根據建模的假設,最佳發電和存儲組合將導致32%的棄電。0482原文:Modeling the Fully Sustainable Energy EconomyFor context,curtailment already exists in markets with high renewable energy penetration.In 2020,19%of the wind

127、 generation inScotland was curtailed,and in 2022,6%of solar generation in California(CAISO)was curtailed due to operational constraints,such as thermal generators inability to ramp down below their minimum operating level,or local congestion on the transmissionsystem34,35.The sustainable energy econ

128、omy will have an abundance of inexpensive energy for consumers able to use it during periods ofexcess,which will impact how and when energy is used.In Figure 12 below,hourly dispatch is depicted across a sample of fall days,showing the role of each generation and storageresource in balancing supply

129、and demand,as well as the concentration of economic curtailment in the middle of the day whensolar is abundant.0483譯文:對完全可持續能源經濟建模在可再生能源普及率高的市場,棄電現象已經存在。2020年,蘇格蘭19%的風力發電量被棄,2022年,加州(CAISO)由于運行限制的原因如火力發電機無法降至最低運行水平以下,或者輸電系統的局部擁堵,導致6%的太陽能發電量被棄34,35??沙掷m能源經濟將為消費者在能源過剩時提供豐富的廉價能源,這將會影響能源的使用方式和時間。下圖展示了秋季的

130、每小時調度情況,顯示了每一發電和儲能資源在平衡供需方面的作用,以及在太陽能充足的正午存在集中的經濟性縮減現象。資料來源:Tesla-Master Plan Part 3,浙商證券研究所0484原文:Modeling the Fully Sustainable Energy EconomyIn Figure 14,hydrogen storage is generally filled during the shoulder months(spring and fall)when electricity demand islower as heating and cooling seasons

131、are over,and solar and wind generation is relatively high.Similarly,as excessgeneration declines in summer and winter months,hydrogen reservoirs decline providing inter-seasonal hydrogen storage.0485譯文:對完全可持續能源經濟建模在上圖中,儲氫通常在肩部月份(春季和秋季)進行,此時隨著供暖和制冷季節的結束,電力需求較低,太陽能和風能發電量相對較高。同樣,隨著夏季和冬季過剩發電量的下降,跨季節儲氫量也

132、在減少。資料來源:Tesla-Master Plan Part 3,浙商證券研究所0486原文:Energy Storage Technologies EvaluatedFor stationary applications,the energy storage technologies in Table 4 below,which are currently deployed at scale,areconsidered.Li-ion means LiFePO4/Graphite lithium-ion batteries.A range of conservative future ins

133、talled costs are listed forlithium ion given the volatility in commodities prices(especially lithium).While there are other emerging technologies such asmetal-air(Fe Fe2O3redox couple)and Na-ion,these are not commercially deployed and therefore not considered.p This includes the storage equipment co

134、st,balance of system,interconnection and installation cost.q Efficiency for the electricity to thermal conversion.The model does not include generating electricity from heat.r Internal estimate.0487譯文:儲能技術評估p 這包括存儲設備成本、系統平衡成本、互連成本和安裝成本。q 電能到熱能轉換的效率。該模型不包括利用熱能發電。r 內部估計。對于固定應用,下表中考慮了目前大規模部署的儲能技術。Li-io

135、n是指LiFePO4/石墨鋰離子電池??紤]到大宗商品價格(尤其是鋰)的波動,本文列出了未來鋰離子電池的保守安裝成本范圍。雖然當前還有其他新興技術,如金屬-空氣電池(Fe Fe2O3氧化還原對)和鈉離子電池,但這些技術尚未商業化部署,因此不予考慮。0488我們的理解儲能種類技術2030-2040安裝成本運維成本(元/kW-年)系統循環效率年循環次數使用壽命技術局限機械儲能熱儲能(儲能時長15h)$78/kWh$15.0095%/20年僅限于工業熱負荷抽水蓄能$270/kWh$17.8080%/100年26TWh(水庫體積有限)季節性水力發電(儲能時長約2個月)/5.7(受水流限制)100年90T

136、Wh(水庫體積&水流限制)電化學儲能鋰離子電池(儲能時長4-8h)$184-231/kWh$0.8095%36520年/氫能地質/鹽穴儲氫$19/kg of H2/98%/50+年/綜合5種儲能技術,機械儲能在技術上存在局限,而氫能在制氫、儲氫及運氫等環節均需要取得突破,技術成熟度有待進一步提高,因此技術成熟度高、應用場景廣泛的鋰離子電池儲能技術為當前儲能的最優解。0489原文:Generation Technologies EvaluatedThe Table below details all the generation technologies considered in the su

137、stainable energy economy.Installed costs weretaken from studies for 2030-2040 from NREL and the Princeton Net-Zero America study.r Internal estimate.s Assumed lifetime improvement.The NREL 2019 Cost of Wind Energy Review estimates wind cost with 25-year lifetime as reference and creates sensitivitie

138、s with 30-year lifetimet Assumed 50%higher capex than the EIA Cost and Performance Characteristics of New Generating T echnologiesu Excluding Deep Enhanced Geothermal System Resources0490譯文:發電技術評估r 內部評估s 假設壽命改善。NREL以25年的使用壽命為參考估計了風能成本,并創造了30年使用壽命的敏感度。t 假設資本支出比EIA發布的新發電技術的成本及性能高50%。u 不包括深層強化地熱系統資源。下表

139、詳細介紹了可持續能源經濟中考慮的所有發電技術。安裝成本來自NREL對2030-2040的研究和普林斯頓凈零美國研究。0491我們的理解發電技術2030-2040安裝成本運維成本(元/kW-年)容量系數使用壽命模型約束美國的技術限制太陽能$752/kW+電網互聯成本$15.9723-28%30年每個地區/可用資源種類的技術潛力153TW(可用土地范圍內)陸地風能$855/kW+電網互聯成本$27.5736-52%30年每個地區/可用資源種類的技術潛力11TW(可用土地范圍內)海上風能$2401/kW+電網互聯成本$76.5148-49%30年每個地區/可用資源種類的技術潛力;僅在東部地區可用1T

140、W水力發電$4200/kW$7000/kW$61.41NA100年額外建造152GW152GW(受河流流速限制)核能$10500/kW$127.35模型輸出95%30年無新建部分100GW綜合6種發電技術,太陽能發電具有成本優勢,且在美國可用土地范圍內能達到的安裝功率上限相對較高。注:容量因子即年實際發電量/額定發電量0492For the US,the optimal generation and storage portfolio to meet the electricity demand,each hour,for the years modeled is shown inthe Ta

141、ble below.v After accounting for curtailment.w The model curtails wind/solar generation when the electricity supply is higher than the electricity demand and battery/thermal/hydrogen storage are full already.Curtailed wind/solar generation isgeneration that isnt consumed by end-uses.x 17.8 TWh of je

142、t fuel derived from H2 are stored with current infrastructure原文:US Only Model Results Meeting New Electrification Demand 0493對于美國來說,模擬年份中滿足每小時電力需求的最佳發電和儲能組合如下表所示。v 在考慮削減后。w 當電力供應高于電力需求并且電池/熱/氫存儲已經滿時,該模型會減少風能/太陽能發電。減少的風能/太陽能發電是指不被終端用戶消耗的發電。x 17.8 TWh的H2噴氣燃料使用現有基礎設施儲存。譯文:僅包含美國的模型結果-滿足新的電氣化需求0494原文:Mod

143、el Resultsy Solar and storage is deployed at less than one-third of suitable residential buildings designated by NREL.Four hours of storage is assumed for C&I deployment and for backup generator substitution.In addition,1.2 TWh of distributed stationary batteries are added based on incremental deplo

144、yments ofdistributed stationary storage alongside rooftop solar at residential and commercial buildings.This includesstorage deployments at 15 million single-family homes48 with rooftop solar,industrial storage paired with43GW49,50of commercial rooftop solar,and storage replacement of at least 200GW

145、51of existing backupgenerator capacityy.Distributed storage deployments are exogenous to the model outputs given deploymentdriven by factors not fully reflected in a least-cost model framework,including end-user resiliency and self-sufficiency when storage is paired with rooftop solar.0495譯文:模型結果此外,

146、基于未來將增加住宅和商業建筑屋頂分布式太陽能儲能系統的部署,增加了1.2 TWh的分布式固定電池,包括了在1500萬戶帶屋頂太陽能的單戶家庭中部署儲能、與43GW49,50商用屋頂太陽能配對的工業儲能,以及替換至少200GW51現有的備用發電機容量。分布式儲能部署是模型輸出的外生因素,因為能源部署并非完全由最低成本模型框架中的因素驅動,如與屋頂太陽能發電配對時,對儲能的部署需考慮終端用戶使用能源的彈性和自給自足。y 在NREL指定的合適住宅建筑中,只有不到三分之一部署了太陽能和儲能系統。假定用于C&I部署和備用發電機替換的存儲時間為4小時。點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標

147、題點擊此處添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題添加標題原文:World Model Results Meeting New Electrification Demand0496Applying the 6 steps to the worlds energy flow would displace all 125PWh/year of fossil fuels used for energy use and replace them with66PWh/year of sustainably generated electri

148、cityz.An additional 4PWh/year of new industry is needed to manufacture the required batteries,solarpanels and wind turbines(assumptions can be found in Appendix:Build the Sustainable Energy Economy Energy Intensity).The global generation and storage portfolio to meet the electricity demand was calcu

149、lated by scaling the US resource mix by 6x.As noted above,this is a significant simplification and could be an area for improvement in future analyses,as global energy demands are different from the U.S.intheir composition and expected to increase over time.This analysis was conducted on the U.S.due

150、 to availability of high-fidelity hourly data.z Remaining 9PWh/year of fossil fuels are consumed through non-energy uses點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題添加標題原文:Appendix:Energy Intensity0497Manufacturing the batteries,solar panels,and wind turbines i

151、n the sustainable energy economy itself requires 4PWh/year of sustainable power.Toarrive at power demand,the energy intensity of manufacturing is estimated as shown in the figures below:ff Energy intensity of graphite is used as a proxy for thermal batteriesgg Internal estimate點擊此處添加標題添加標題點擊此處添加標題點擊

152、此處添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題添加標題譯文:世界模型結果滿足新的電氣化需求0498 采用上文所述6個步驟,將用 66PWh/年的可再生能源發電取代125PWh/年的化石能源發電;每年因此需額外增加4PWh的新產業用于制造電池、太陽能電池板和風力渦輪機;仍保留原化石燃料消耗結構中非能源用途消耗:大約9PWh/年;全球的發電與存儲組合是通過將美國的資源組合擴大6倍進行計算。35.8%資料來源:Tesla-Master Plan Part 3,浙商證券研究所點擊此處添加標題添加標題點擊此處添加標題點擊此處添

153、加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題添加標題譯文:附錄能量密度0499還需要每年約4PWh的耗能來制造所需的電池、太陽能電池板、風電渦輪機風電渦輪機太陽能面板耗能密度GWh/GW10521072裝機容量GW/年402610總耗能(PWh)0.420.65風電&光伏年耗能數據高鎳LFPNi/Mn電池熱電池耗能密度GWh/GWh312190342125電池容量GWh/年348177152922070總耗能(PWh)1.091.470.100.26電池年耗能數據4 PWh資料來源:Tesla-Master Plan P

154、art 3,浙商證券研究所我們的理解:可再生能源經濟更為高效04100 66PWh/年的可再生能源125PWh/年的化石能源保留約9PWh/年非能源用途化石燃料需求;美國的發電儲能組合6 滿足全球需求的發電與儲能組合??稍偕茉锤鼮楦咝?;化石燃料仍不可完全被取代;資源稟賦與發展水平差異限制了對全球可再生經濟的精確建模求解。點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題添加標題原文:Batteries for Transportation04101VehiclesToday

155、there are 1.4B vehicles globally and annual passenger vehicle production of 85M vehicles,according to OICA.Based on pack sizeassumptions,the vehicle fleet will require 112 TWh of batteriesaa.Autonomy has potential to reduce the global fleet,and annual productionrequired,through improved vehicle util

156、ization.Standard-range vehicles can utilize the lower energy density chemistries(LFP),whereas long-range vehicles require higher energy densitychemistries(high nickel).Cathode assignment to vehicle segment is listed in the table below.High Nickel refers to low to zero cobalt NickelManganese cathodes

157、 currently in production,under development at Tesla,Teslas suppliers and in research groups.aa To approximate the battery storage required to displace 100%of road vehicles,the global fleet size,pack size(kWh)/Global passenger fleet size and annual production(85M vehicles/year)is basedon data from OI

158、CA.The number of vehicles by segment is estimated based on S&P Global sales data.For buses and trucks,the US-to-global fleet scalar of 5x is used as global data was unavailable點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題添加標題原文:Batteries for Transportation04102

159、Ships and PlanesWith 2.1PWh of annual demand,if ships charge 70 times per year on average,and charge to 75%of capacity each time,then40TWh of batteries are needed to electrify the ocean fleet.The assumption is 33%of the fleet will require a higher densityNickel and Manganese based cathode,and 67%of

160、the fleet will only require a lower energy density LFP cathode.For aviation,if 20%of the 15,000 narrow body plane fleet is electrified with 7MWh packs,then 0.02TWh of batteries will be required.These are conservative estimates and likely fewer batteries will be needed.點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題點擊此

161、處添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題添加標題譯文:車用電池04103根據OICA的數據,如今全球有14億輛汽車,年乘用車產量約為8500萬輛。根據電池組尺寸假設,車隊將需要 112 TWh 的電池。自動駕駛有可能通過提高車輛利用率來減少全球車隊和所需的年產量。標準范圍車輛可以使用較低的能量密度化學物質(LFP),而遠程車輛則需要更高的能量密度化學物質(高鎳)。下表列出了車輛段的正極分配。高鎳是指特斯拉、特斯拉供應商和研究小組目前正在生產、正在開發的低至零鈷鎳錳正極。aa 為了近似取代100%道路車輛所需的電池存儲,全球車隊規

162、模,包裝規模(kWh)/全球客運車隊規模和年產量(85M輛/年)基于OICA的數據。按細分市場劃分的車輛數量是根據標普全球的銷售數據估算的。對于公共汽車和卡車,由于全球數據不可用,因此使用5倍的美國到全球車隊標量。車用電池能量測算車型Tesla 車型正極Pack Size(kWh)銷量/萬輛/年保有量/萬輛能量/TWh緊湊型TBDLFP5342006860036中型Model 3/YLFP7524003800028商用/客車TBDHigh Nickel10010001630016大型轎車,SUV和卡車Model S/X,CybertruckHigh Nickel1009001490015公共汽

163、車TBDLFP3001005002短程重型卡車Semi LightLFP5001006703遠程重型卡車Semi HeavyHigh Nickel800200133011合計-8900140300112資料來源:Tesla-Master Plan Part 3,浙商證券研究所添加標題譯文:飛機&船舶電池04104在年需求量為2.1PWh的情況下,如果船舶平均每年充電約70次,每次充電至75%的容量,則需要40TWh的電池為船舶艦隊供電。假設33%的船隊需要更高密度的鎳和錳基正極,67%的船隊只需要更低能量密度的LFP正極。對于航空業,如果約15000架窄體機隊中有20%使用7MWh的電池組進行

164、電氣化,那么將需要0.02TWh的電池。這些都是保守估計,可能需要更少的電池。正極全球規模需求/TWh遠程船舶鎳/錳基12短程船舶磷酸鐵鋰28飛機高鎳0.02合計-40電動船舶艦隊/機隊電池需求細分資料來源:Tesla-Master Plan Part 3,浙商證券研究所我們的理解:運輸電池市場無比廣闊04105測算邏輯全球車隊規模(分車型)車用電池容量(分類別)全球車用電池容量需求14億輛汽車全部電氣化對應著112TWh的車用電池容量需求!全球飛機/船舶規模電氣化替代比例飛機/船舶電池容量需求若電氣化替代順利,全球飛機/船舶市場有約40TWh電池容量需求添加標題原文:World Model

165、Results Electrification&Transportation Batteries04106Table 9 summarizes the generation and storage portfolio to meet the global electricity demand and the transportation storage required based onthe vehicle,ship and plane assumptions.Explanation of how the generation and storage portfolios were allo

166、cated to end-uses can be found inAppendix:Generation and storage allocation to end-uses.添加標題原文:Appendix:Generation&Storage Allocation to End-Uses04107In this analysis,generation and storage needs are estimated at the system level,i.e.,answering the question:how much wind/solar and storage isrequired

167、 to reach a sustainable energy economy.The model does not explicitly calculate the required generation and storage to electrify each end-use separately.As an illustration,the allocation of the total system needs to each end-use is calculated using the output from the capacityexpansion model.To do so

168、,the coincidence between the hourly demand profile and the solar and wind generation,after curtailment,is calculated for each end-use.Wind and solar installed capacity is allocated to each end-use based on their annual weighted average coincidence factor.For instance,12%ofthe annual wind generation

169、coincided with the EV charging demand.As the model output indicated the need for 15.2 TW of wind,12%of that totalwas allocated to EV charging or about 1.9 TW.The same methodology was applied to allocate battery storage capacity to each end-use,bymatching storage discharges to end-use demand.Generall

170、y,end-uses with the least flexibility to shift the demand,such as residential heating,areallocated more storage than end-uses like industrial high-grade heat where the availability of thermal storage is assumed.This allocation methodology is a directional illustrative estimate of the impact of each

171、end-use on the total solar/wind and storage requirement,asthe need from each end-use is interrelated and cannot fully be separated from each other.ee Including 8 TWh of stationary electricity storage,excluding h2 storage.點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此

172、處添加標題添加標題譯文:全球建模結果電氣化&運輸電池04108發電和儲存組合,以滿足全球電力需求以及基于車輛、船舶和飛機假設所需的運輸儲存汽車電池/TWh飛機&船舶電池/TWh固定式電化學電池/TWh固定式熱電池/TWh光伏發電/TW風力發電/TW光伏+風能發電/TW電解槽/TW儲氫/TWh用可再生能源改善現有電網-22.9-6.83.810.6-轉向電動車112-3.7-3.31.54.9-在住宅、商業和工業中改用熱泵-6.7-2.72.14.8-電氣化高溫熱傳遞過程-4.141.41.31.52.8-制氫/儲氫-4.4-2.11.63.72.5642可再生能源飛機&船舶-404.4-2.1

173、1.63.7-合計1124046.241.418.312.130.32.5642資料來源:Tesla-Master Plan Part 3,浙商證券研究所點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題添加標題譯文:附錄:發電&儲能終端用途分配04109在這個分析中,系統層面上估計了發電和儲能需求,也就是回答了這個問題:需要多少風能/太陽能和儲能才能達到可持續的能源經濟。該模型并沒有明確計算電氣化每個最終用途所需的發電和儲能量。作為示例,將總體系統需求分配到每個最終用途上是通

174、過使用容量擴展模型的輸出來計算的。為此,計算了每個最終用途的小時需求曲線和風能/太陽能發電量之間的巧合度,以及進行了削減后的量。根據年加權平均巧合系數,將風能和太陽能裝機容量分配給每個最終用途。例如,12%的年風能發電量與電動汽車充電需求相吻合。由于模型輸出顯示需要15.2 TW的風能,因此這個總量的12%被分配給電動汽車充電,大約為1.9 TW。相同的方法被應用于將儲能容量分配給每個最終用途,通過將儲能放電與最終用途需求相匹配。通常,對于那些無法調整需求的最終用途,例如住宅供暖,會分配更多的儲能容量,而對于那些有熱儲存可用的最終用途,例如工業高品位熱,分配的儲能容量較少。這種分配方法是對每個

175、最終用途對總體風能/太陽能和儲能需求的影響的方向性估計,因為每個最終用途的需求是相互關聯的,無法完全從彼此中分離。原文:Generation&Storage Waterfall04110我們的理解:發電&交通運輸電氣化是重點04111電動車是電池方向的重要支撐;光伏風電主要用于現有電網的重新賦能。95%車用&固定電池組(TWh)風電&光伏(TW)資料來源:Tesla-Master Plan Part 3,浙商證券研究所投資需求05Partone可持續能源經濟需投資10萬億美VS維持化石燃料經濟需投資14萬億美元112添加標題原文:Investment Required05113Investme

176、nt catalogued here is inclusive of the manufacturing facilities,mining and refining operations for materials that require significant growth,and hydrogen storage salt cavern installation.Manufacturing facilities are sized to the replacement rate of each asset,and upstream operations(e.g.,mining)are

177、sized accordinglybb.Materials that require significant capacity growth are:For mining:nickel,lithium,graphite and copper.For refining:nickel,lithium,graphite,cobalt,copper,battery grade iron and manganese.In addition to initial capex,5%/year maintenance capex with a 20-year horizon is included in th

178、e investment estimate.Using these assumptions,building the manufacturing infrastructure for the sustainable energy economy will cost$10 trillioncc,as compared to the$14 trillion projected 20-year spend on fossil fuels at the 2022 investment rate.bb For example,if 46 TWh of stationary LFP battery sto

179、rage is required,and the life of a battery is 20 years,then the manufacturing capacity is sized to 2.3 TWh/year.cc In-scope manufacturing capacity investments:wind turbines,solar panels,battery cells,upstream battery inputs,mining,refining,electric vehicles,heat pumps,and electrolyzers,carbon captur

180、e,andFischer Tropsch.Salt cavern hydrogen storage is also included.添加標題原文:Investment Required05114添加標題譯文:投資需求05115此處列舉的投資包括制造設施、需要大幅增長的材料的采礦和精煉操作,以及氫儲存鹽穴安裝。制造設施的規模根據每項資產的更換率來確定,上游操作(如采礦)相應地進行規模調整。需要大幅增長的材料包括:對于采礦:鎳、鋰、石墨和銅。對于精煉:鎳、鋰、石墨、鈷、銅、電池級鐵和錳。除了初期的資本支出外,還包括20年期限內每年5%的維護資本支出。根據這些假設,建設可持續能源經濟的制造基礎設施

181、將花費10萬億美元,若按2022年化石燃料支出預計,20年內化石燃料支出將達14萬億美元。bb 例如,如果需要46 TWh的固定LFP電池存儲,且電池壽命為20年,那么制造容量將達到每年2.3 TWh。cc 范圍內的制造能力投資:風力渦輪機、太陽能電池板、電池單元、上游電池輸入、采礦、精煉、電動汽車、熱泵和電解器、碳捕獲和費希爾-特羅普反應。鹽穴氫儲存也包括在內。添加標題我們的理解:10萬億 VS 14萬億,可再生能源優勢巨大05116 可再生能源所需資本投入更低;電動汽車工廠需投入1.78萬億美元,電池工廠需投資2.18萬億美元;電動汽車材料開采精煉需投資1.67萬億美元,制氫電解槽與儲氫需

182、1.88萬億美元資本投入,規模震撼!資料來源:Tesla-Master Plan Part 3,浙商證券研究所點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題添加標題原文:Investment Requireddetails05117Table 13 Provides additional detail into mining,refining,vehicle factories,battery factories and recycling assumptions.Mini

183、ngand refining assumptions are an internal estimate of industry average based on public industry reports:添加標題95%譯文:開采、精煉、汽車電池、回收資本開支細節05118開采、精煉、汽車電池工廠、回收再利用細則單位單位成本/萬美元開采量/千噸/年億美元Ni千噸/年510028501450LHM(Li)千噸/年250067851700Gr千噸/年1000104461040Cu千噸/年12506600830合計5020開采細節單位單位成本/萬美元開采量/千噸/年億美元Ni千噸/年200028

184、50570Co千噸/年3000164.8LHM(Li)千噸/年300067852040Fe千噸/年14006025840Gr千噸/年1700104461780Cu千噸/年200066001320Mn千噸/年140053070合計6624.8精煉細節單位單位成本/萬美元容量需求輛/年GWh/年億美元汽車工廠 輛/年189008900電化學電池工廠GWh/年8000114889190熱電池工廠GWh/年10002070210大儲工廠GWh/年10002310230上游電池材料GWh/年249091782290合計20820汽車電池工廠單位單位成本/萬美元開采量/年億美元電化學電池回收GWh/年15

185、00114881720熱電池回收GWh/年14002070290光伏回收 GW/年140061090渦輪回收 GW/年140040260合計2150回收再利用資料來源:Tesla-Master Plan Part 3,浙商證券研究所占地需求06Partone光伏與風能發電占地總需求約為全球面積0.21%119添加標題95%原文:Land Area Required06120Solar land area requirement is estimated based on a US Lawrence Berkeley National Laboratory(LBNL)empirical asse

186、ssment of actual US projects,which found that the median power density for fixed-tilt systems installed from 2011-2019 was 2.8 acres/MWdc57.Converting MWdc to MWac using a 1.4 conversion ratio yields roughly 3.9 acres/MWac.Therefore,the global solar panel fleet of 18.3TW will require roughly 71.4 mi

187、llion acres,or 0.19%of the total 36.8 billion acres global land area.Wind land area requirement is estimated based on a US National Renewable Energy Laboratory(NREL)study which found that the direct land usage is 0.75 acres per MW58.Therefore,the global wind turbine fleet of 12.2TW will require an e

188、stimated 9.2 million acres,or 0.02%of total land area.添加標題95%譯文:占地規模光伏&風電占地極少06121太陽能用地面積需求是根據美國勞倫斯伯克利國家實驗室(LBNL)對實際美國項目的經驗評估得出的,該評估發現,2011-2019年安裝的固定傾斜系統的中位數功率密度為2.8英畝/MWdc。將MWdc轉換為MWac,使用1.4的轉換比率,得到大約3.9英畝/MW。因此,全球18.3TW的太陽能電池板組需要大約7140萬英畝(2.89萬平方公里),占全球總共368億英畝土地面積的0.19%。風能用地面積需求是根據美國國家可再生能源實驗室(N

189、REL)的一項研究得出的,該研究發現直接用地面積為每兆瓦0.75英畝58。因此,全球12.2TW的風力渦輪機組預計需要約920萬英畝(3723平方公里),占總土地面積的0.02%。資料來源:Tesla-Master Plan Part 3,浙商證券研究所材料需求07Partone30TW的裝機、240TWh的電池存儲和6000萬英里輸電線路共需128.15億噸材料鋰/銅/鎳年需求量為700萬噸/700萬噸/300萬噸122添加標題95%原文:Materials Required07123AssumptionsThe total materials required for solar pane

190、ls,wind turbines,and circuit miles miles are calculated based on third party material intensity assumptions.Battery material intensity is based on internal estimates.Solar panel and wind turbine material intensity assumptions are from a European Commission report.Solar cells are wafer-based crystall

191、ine silicon,and rare earth minerals are eliminated from wind turbines,given the progress demonstrated in developing technologies.Based on IEAs 2050 Net Zero pathways study,approximately 60 million circuit miles will need to be added or reconductored globally to achieve a fully sustainable,electrifie

192、d global economy.Distribution capacity will primarily be expanded by reconductoring existing lines and expanding substation capacity that can accommodate significant growth in peak and average end-user demand.High-voltage transmission will primarily expand geographic coverage to connect large wind a

193、nd solar generation capacity to densely populated areas.For purposes of estimating material requirements,90%of the 60 million circuit miles will be reconductoring of existing low-voltage distribution systems and 10%will be new circuit-miles from high-voltage transmission,which is the current ratio o

194、f US circuit miles between high-voltage transmission and low-voltage distribution.Using the above assumptions,12,815 million tonnes in total(444 million tonnes annually)will be required to manufacture 30 TW of generation,240 TWh of battery storage,and 60M transmission miles.添加標題95%譯文:材料投入07124太陽能電池板

195、、風力渦輪機和電路英里所需的總材料是根據第三方材料密度假設計算的;電池材料密度基于內部估算;太陽能電池板和風力渦輪機材料密度假設來自歐洲委員會的報告;考慮到開發技術的突破進展,太陽能電池采用晶體硅晶片,而風力渦輪機中將消除稀土礦物的使用。根據IEA的2050年凈零排放途徑研究,全球需要新增或改造約6000萬電路英里,以實現完全可持續、電氣化的全球經濟。配電容量主要通過改造現有線路和擴大能夠適應峰值和平均終端用戶需求顯著增長的變電站容量來擴大。高壓輸電主要擴大地理覆蓋范圍,將大型風能和太陽能發電能力連接到人口密集地區。為了估算材料需求,6000萬電路英里中的90%將是對現有低壓配電系統的改造,1

196、0%將是來自高壓輸電的新電路,這是美國高壓輸電和低壓配電之間的電路英里的當前比例。根據以上假設,為制造30TW的裝機、240TWh的電池存儲和6000萬英里的輸電線路,總共需要128.15億噸(每年444百萬噸)的材料。添加標題95%原文:Materials RequiredGeneration Details07125添加標題95%譯文:材料投入:發電材料細節07126噸/GW太陽能風能備注混凝土56200328250-鋼鐵62800119500-玻璃429008050-塑料7900-鋁75001050-銅43002975-鐵-19400-硅2000-鋅-5500-聚合物-4600-錳-79

197、0-鉻-525-鎳-340-鉬-109排除,設計消除釹-96排除,設計消除銀4-鐠-18排除,設計消除鏑-8排除,設計消除鋱-4排除,設計消除硼-3排除,設計消除發電材料(噸/GW)資料來源:Tesla-Master Plan Part 3,浙商證券研究所添加標題95%原文:Materials RequiredBattery&Transmission Details07127*LHM is equivalent to LiOH-H2O and has approximately 6x the mass as the Lithium alone添加標題95%譯文:材料投入:電池材料/輸電材料細節

198、07128kg/kWh高鎳LFP鎳/錳基熱儲Ni0.75-0.4-Co-0.06-Al0.090.330.12-Mn-0.73-Fe-0.78-P-0.42-Cu0.170.270.23-Gr0.591.050.894.00Si0.04-LHM(Li)*0.540.610.63-電池材料需求密度(kg/kWh)kg/km混凝土鋼鋁銅玻璃鉛高壓架空209,13852,26612,883-1,100-高壓地下17,500-11,650-14,100中壓架空-802-1,488-中壓地下-824663-低壓架空-981-低壓地下-177531-輸電材料需求密度(kg/km)*LHM相當于LiOH-H

199、2O,質量約為鋰的6倍資料來源:Tesla-Master Plan Part 3,浙商證券研究所添加標題95%原文:Materials RequiredSummary07129添加標題95%譯文:材料投入匯總07130發電電池輸電總計鎳436-40鈷-1-1鋁15052210412錳108-18鐵28261134953434銅11549-164石墨-353-353LHM(鋰)-118-118銀0.07-0.07鋅66-66磷-61-61混凝土4991-20197010塑料145-145玻璃883-11893硅372-38聚合物56-56鉻6-6總計9288793273412815總材料投入(百

200、萬噸)材料發電電池輸電總計鎳03-3鈷-0-0鋁53715錳00-1鐵94616117銅43-7石墨-19-19LHM(鋰)-7-7銀0.002-0.002鋅2-3磷-3-3混凝土166-67234塑料5-5玻璃29-0.430硅1-1聚合物2-2鉻0.2-0.2總計3104391444每年材料投入(百萬噸)資料來源:Tesla-Master Plan Part 3,浙商證券研究所添加標題95%原文:Material Extraction07131The mass flows associated with these materials(i.e.,how much earth is move

201、d)relies on ore grade and through-process yield.Using an internal estimate of industry average compiled from public industry reports(See Table 19),the required annual mass flow is estimated to be 3.3 gigatonnes(Gt).Mass flows can reduce if aluminum(50%ore grade)is substituted for copper(1%ore grade)

202、,which is possible in many use cases.It is assumed that 50%of lithium is extracted from brine 100%ore grade,if this is not the case,then the mass flow associated with lithium would increase by 0.8Gt.According to the Circularity Gap Report 2023,68Gt of material,excluding biomass,is extracted from the

203、 earth each year fossil fuels account for 15.5Gt of this.In a sustainable energy economy,material extraction will decrease by 10.8Gt with most fossil fuel extraction replaced by 3.3Gt of renewable material extraction.The assumption is that fossil fuel extraction associated with non-energy end uses(i

204、.e.plastics and other chemicals)continues,approximately 9%of the fossil fuel supply,according to the IEA.添加標題95%譯文:材料提取07132這段內容主要討論了與這些材料相關的質量流量(即,移動了多少地球物質),它依賴于礦石品位和整個加工過程的產量。根據公共行業報告匯編的內部估計的行業平均水平(見P133右表:材料提取參數/開采量),所需的年度質量流估計為3.3吉噸(Gt)。在許多用例中,如果用鋁(50%礦石品位)替代銅(1%礦石品位),質量流可以減少。假設50%的鋰是從鹵水中提取的,礦石

205、品位為100%,如果實際情況不是這樣,那么與鋰相關的質量流將增加0.8吉噸。根據2023年循環缺口報告,每年從地球上提取68吉噸物質,不包括生物質,其中化石燃料占15.5吉噸。在可持續能源經濟中,物質提取將減少10.8吉噸,其中大部分化石燃料提取將被3.3吉噸可再生物質提取所替代。假設與非能源最終用途(如塑料和其他化學品)相關的化石燃料提取仍在繼續,根據國際能源署(IEA),占化石燃料供應的約9%。添加標題95%我們的理解:鋰、銅、鎳空間廣闊,大有可為!07133類型礦石含量開采產出比開采量(百萬噸/年)鎳0.010.79370鈷0.0040.775鋁0.4490.937錳0.4190.752

206、鐵0.6150.65293銅0.0090.81955石墨0.1690.86128LHM(鋰)0.0070.58860銀0.000020.75185鋅0.0560.8248磷0.1250.552混凝土10.65360塑料115玻璃1130硅0.80.384聚合物112鉻0.3450.650總計3335材料提取參數/開采量材料發電電池輸電總計鎳03-3鈷-0-0鋁53715錳00-1鐵94616117銅43-7石墨-19-19LHM(鋰)-7-7銀0.002-0.002鋅2-3磷-3-3混凝土166-67234塑料5-5玻璃29-0.430硅1-1聚合物2-2鉻0.2-0.2總計310439144

207、4每年材料投入需求(百萬噸)支柱材料需求:鋰 700萬噸/年、銅 700萬噸/年、鎳 300萬噸/年;對應資本開支:鋰 3740億美元,銅 2150億美元,鎳 2020億美元。資料來源:Tesla-Master Plan Part 3,浙商證券研究所添加標題95%原文:Material Availability07134The total material in Table 18 extraction is evaluated against 2023 USGS resources to assess feasibility.For silver,the USGS does not publi

208、sh a resources estimate,so reserves were used.The analysis suggests that solar panels will require 13%of the 2023 USGS silver reserves,but silver can be substituted with copper,which is cheaper and more abundant.Graphite demand can be met with both natural and artificial graphite-the former is mined

209、 and refined,and the latter is derived from petroleum coke.As a result,the graphite resource base was increased to account for artificial graphite production from oil products.If only a small fraction of the worlds oil resource is used for artificial graphite production,graphite resources will not b

210、e a constraint.Ongoing development is aimed at evaluating other carbon containing products as feedstock for artificial graphite production,including CO2 and various forms of biomass.In sum,there are no fundamental materials constraints when evaluating against 2023 USGS estimated resources.Furthermor

211、e,Resources and Reserves have historically increased that is,when a mineral is in demand,there is more incentive to look for it and more is discovered.Annual mining,concentrating,and refining of relevant metal ores must grow to meet demand for the renewable energy economy,for which the fundamental c

212、onstraints are human capital and permitting/regulatory timelines.添加標題95%譯文:材料可獲得性07135根據 2023 年 USGS 公布的資源數據對表 18(對應報告P130左表)的總材料投入進行評估,以評估可行性。對于銀,USGS沒有公布資源估計,因此使用了儲量。分析表明,太陽能電池板將需要2023年USGS銀儲量的13%,但銀可以用價格更便宜、更豐富的銅替代。石墨需求可以用天然石墨和人造石墨滿足,前者是開采和提煉的,后者是從石油焦炭衍生的。因此,石墨資源基礎增加了,以考慮從石油產品中生產人造石墨。如果僅使用世界石油資源的

213、一小部分用于人造石墨生產,石墨資源將不會成為約束。正在進行的開發旨在評估其他含碳產品作為人造石墨生產原料,包括CO2和各種形式的生物質??傊?,在評估2023年USGS預估的資源時,沒有根本性的材料限制。此外,歷史上資源和儲量都在增加,即當礦物受到需求時,尋找和發現它的激勵就更大。為滿足可再生能源經濟的需求,必須增加相關金屬礦石的年度開采、選礦和提煉,其根本制約因素是人力資本和許可/監管計劃。資料來源:Tesla-Master Plan Part 3,浙商證券研究所添加標題95%我們的理解:新能源材料需求僅是儲量冰山一角07136 新能源材料需求廣闊,儲備更為廣闊,無需擔憂竭澤而漁;與豐富的儲量

214、相比,需求僅是冰山一角,冰面下的世界更為精彩;百花齊放的下游需求將會催生一批新能源材料破冰企業!資料來源:Tesla-Master Plan Part 3,浙商證券研究所添加標題95%原文:Recycling07137To support this plan,significant primary material demand growth is required to ramp manufacturing for the sustainable energyeconomy,once the manufacturing facilities are ramped,primary materi

215、al demand will level out.In the 2040s,recycling will begin to meaningfully reduce primary material demand as batteries,solar panels and wind turbines reach end-of-life and valuable materials are recycled.Although mining demand will decrease,refining capacity will not.添加標題95%譯文:假設80%的關鍵材料可回收07138為了支持

216、宏圖計劃,需要顯著增長初級材料需求,以促進可持續能源經濟的制造,一旦制造設施啟動,初級材料需求將趨于平穩。到 2040 年代,隨著電池、太陽能電池板和風力渦輪機的使用壽命結束,有價值的材料將被回收利用,回收將開始顯著減少對初級材料的需求。盡管采礦需求會減少,但煉油能力會。資料來源:Tesla-Master Plan Part 3,浙商證券研究所添加標題95%總結:Master Plan宏偉愿景139資料來源:Tesla-Master Plan Part 3,浙商證券研究所長坡厚雪,久久為功140宏偉藍圖星辰大海資料來源:浙商證券研究所風險提示091411、可再生能源技術突破受限;2、可再生能源

217、經濟替代進程不及預期;3、各國對可再生能源經濟政策激勵不足;4、全球供應鏈體系不穩定性增加;5、翻譯錯誤風險,報告涉及Master Plan Part 3Sustainable Energy for All of Earth等文章譯文,或因語法理解、翻譯有誤、翻譯不完整等原因造成與原表述存在偏差的風險,譯文內容僅供參考,準確內容請詳見原文.點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題點擊此處添加標題添加標題點擊此處添加標題添加標題95%行業評級與免責聲明142行業的投資評級以報告日后的6個月內,行業指數相對于滬

218、深300指數的漲跌幅為標準,定義如下:1、看好:行業指數相對于滬深300指數表現10%以上;2、中性:行業指數相對于滬深300指數表現10%10%以上;3、看淡:行業指數相對于滬深300指數表現10%以下。我們在此提醒您,不同證券研究機構采用不同的評級術語及評級標準。我們采用的是相對評級體系,表示投資的相對比重。建議:投資者買入或者賣出證券的決定取決于個人的實際情況,比如當前的持倉結構以及其他需要考慮的因素。投資者不應僅僅依靠投資評級來推斷結論行業評級與免責聲明143法律聲明及風險提示本報告由浙商證券股份有限公司(已具備中國證監會批復的證券投資咨詢業務資格,經營許可證編號為:Z39833000

219、)制作。本報告中的信息均來源于我們認為可靠的已公開資料,但浙商證券股份有限公司及其關聯機構(以下統稱“本公司”)對這些信息的真實性、準確性及完整性不作任何保證,也不保證所包含的信息和建議不發生任何變更。本公司沒有將變更的信息和建議向報告所有接收者進行更新的義務。本報告僅供本公司的客戶作參考之用。本公司不會因接收人收到本報告而視其為本公司的當然客戶。本報告僅反映報告作者的出具日的觀點和判斷,在任何情況下,本報告中的信息或所表述的意見均不構成對任何人的投資建議,投資者應當對本報告中的信息和意見進行獨立評估,并應同時考量各自的投資目的、財務狀況和特定需求。對依據或者使用本報告所造成的一切后果,本公司

220、及/或其關聯人員均不承擔任何法律責任。本公司的交易人員以及其他專業人士可能會依據不同假設和標準、采用不同的分析方法而口頭或書面發表與本報告意見及建議不一致的市場評論和/或交易觀點。本公司沒有將此意見及建議向報告所有接收者進行更新的義務。本公司的資產管理公司、自營部門以及其他投資業務部門可能獨立做出與本報告中的意見或建議不一致的投資決策。本報告版權均歸本公司所有,未經本公司事先書面授權,任何機構或個人不得以任何形式復制、發布、傳播本報告的全部或部分內容。經授權刊載、轉發本報告或者摘要的,應當注明本報告發布人和發布日期,并提示使用本報告的風險。未經授權或未按要求刊載、轉發本報告的,應當承擔相應的法律責任。本公司將保留向其追究法律責任的權利。聯系方式144浙商證券研究所上??偛康刂罚簵罡吣下?29號陸家嘴世紀金融廣場1號樓25層北京地址:北京市東城區朝陽門北大街8號富華大廈E座4層深圳地址:廣東省深圳市福田區廣電金融中心33層郵政編碼:200127 電話:(8621)80108518 傳真:(8621)80106010 浙商證券研究所:http:/

友情提示

1、下載報告失敗解決辦法
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站報告下載后的文檔和圖紙-無水印,預覽文檔經過壓縮,下載后原文更清晰。

本文(新能源材料行業:范式進階!-230508(144頁).pdf)為本站 (Shri) 主動上傳,三個皮匠報告文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。 若此文所含內容侵犯了您的版權或隱私,請立即通知三個皮匠報告文庫(點擊聯系客服),我們立即給予刪除!

溫馨提示:如果因為網速或其他原因下載失敗請重新下載,重復下載不扣分。
客服
商務合作
小程序
服務號
折疊
午夜网日韩中文字幕,日韩Av中文字幕久久,亚洲中文字幕在线一区二区,最新中文字幕在线视频网站