通過 CDC、Apache Spark? 流和 Delta Lake 解鎖近實時數據復制.pdf

編號:139075 PDF 26頁 1.50MB 下載積分:VIP專享
下載報告請您先登錄!

通過 CDC、Apache Spark? 流和 Delta Lake 解鎖近實時數據復制.pdf

1、Unlocking Near Real Time Data Replication with CDC,Apache Spark Streaming,and Delta LakeDatabricks2023Ivan Peng and Phani NalluriHow many orders did DoorDash do yesterday?How many orders did DoorDash do yesterday?Get me data from databasesselect*from table_nameGet me data from databases,fastselect*f

2、rom table_name where updated_at$LATEST_DATEmergeGet me data from databases,fast and as the schema changesselect*from information.schemas where name=table_name;mergeselect*from information.schemas where name=table_name;reconcilepageincompatibleselect*from information.schemas where name=table_name;mer

3、geselect*from information.schemas where name=table_name;reconcilepageincompatiblex1000Somewhere in there is a migration from Redshift to Snowflake,and building a whole orchestration system around the tasks HistoryAKA the State of Data at DoorDash,2020 90%of 1000 DB tables were dumped to Snowflake vi

4、a naive dump Incremental tables required:Table to have an updated_at fieldIndex on that fieldApplication to update that field on every write operation CDC was present,but in its infancy at DoorDashProject PeptoAlleviating indigestion of data processingRequirementsHave better data freshness than 24 h

5、oursOwn our data on a modern Lakehouse platformHandle schema evolution and backfillsEnable analytical workloads that otherwise would have been run on the production databasesDesign TenetsLean into CDC/Kafka across all database flavorsBuild a self-serve platform to democratize onboarding of tablesWri

6、te-once,read manyLeverage streaming checkpointing to bypass late-arriving dataOperational simplicityProject PeptoWhat we are not A coupled service with databases A real-time system that feeds into online servicesProject PeptoHighlighted Design Decisions Not-kappa architecture Freezing schemas with“s

7、chema registry”Delta Lake over other table formatsSteady State ModeRebuild ModeBatch Merge ModeProject PeptoResults Table onboarding down to 1 hour and self-serve 450 streams,over 1000 EC2 nodes running 24/7 800 GB/day as input,80 TB rewritten/day Data freshness of 7-30 minutesResultsProject PeptoCh

8、allenges and Learnings Checkpointing solves a lot of problems Type conversions are hard!For every adapter theres 2 serializers Large tables are operationally challenging State management is tough make everything idempotentDatabrickss API with idempotency guarantees simplifies a lot Reputation is hard to gain,easy to loseFuture Work Ad Hoc queries to migrate from online DBs to Delta Lake workloads Streaming PII obfuscation in medallion architecture Schema changes to the sourceQuestions?Thank you

友情提示

1、下載報告失敗解決辦法
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站報告下載后的文檔和圖紙-無水印,預覽文檔經過壓縮,下載后原文更清晰。

本文(通過 CDC、Apache Spark? 流和 Delta Lake 解鎖近實時數據復制.pdf)為本站 (2200) 主動上傳,三個皮匠報告文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。 若此文所含內容侵犯了您的版權或隱私,請立即通知三個皮匠報告文庫(點擊聯系客服),我們立即給予刪除!

溫馨提示:如果因為網速或其他原因下載失敗請重新下載,重復下載不扣分。
客服
商務合作
小程序
服務號
折疊
午夜网日韩中文字幕,日韩Av中文字幕久久,亚洲中文字幕在线一区二区,最新中文字幕在线视频网站