1、ISSCC 2024SESSION 27Wireless Power1 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits Conference1 of 35A Differential Hybrid Class-ED Power Amplifier with 27W Maximu
2、m Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-GoFangyu Mao1,*,Rui Martins1,Yan Lu11University of Macau,Macao,China*Now with Light Semibucks(Wuxi)Ltd.,Wuxi,China2 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless
3、 Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceOutlineMotivationsPrior Power Amplifiers for Wireless Power TXProposed Hybrid Class-ED PAMeasurement ResultsConclusions3 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficie
4、ncy for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceWireless Fast Charging To-Go*M.Huang et al.ISSCC,2017Wireless Charging To-GoMagnetic Attachment2-Cell Li-ion BatterySlow Charging and High Power Loss Low Input Voltage(8.7V)-Low charging powerHigh ESR of Coup
5、ling Coils-Low efficiency-Thermal issue-Limited currentESR=RDC+RACRAC:skin&proximity effects 4 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceOutlineMot
6、ivationsPrior Power Amplifiers for Wireless Power TXProposed Hybrid Class-ED PAMeasurement ResultsConclusions5 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits Conf
7、erencePrior Power Amplifiers for Wireless Power TXLow VACPeak and Low VAC RMSOn-chip 12V LDMOS-Good RONQG-Compact sizeLow TX power RMS21ACINVV=High VAC RMS and Low VAC PeakHigh TX power40V HV LDMOS-Degraded RONQGGaN FET-High-cost,Bulky,ComplexIM:Maximum magnitude of ITXconsidering thermal performanc
8、e.RMS22 21+4ACINVV=Class-D PAClass-E PA6 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceClass-D PA|VAC|clamped by VIN Discontinuous powerfrom VIN RMS21A
9、CINVV=Class-E PA VACfreely charged by IL-ITX LC:continuous power from VIN RMS22 21+4ACINVV=Class-D PAClass-E PAImportant Characters of Class-D and Class-E PA7 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2
10、024 IEEE International Solid-State Circuits ConferenceImportant Characters of Class-D and Class-E PAClass-D PA|VAC|clamped by VIN Discontinuous powerfrom VIN RMS21ACINVV=Class-E PA VACfreely charged by IL-ITX LC:continuous power from VIN RMS22 21+4ACINVV=Class-D PAClass-E PADesired PA|VAC|clamped at
11、 proper voltage-Integrated power transistors-Good RONQG Continuous power from VIN8 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceOutlineMotivationsPrio
12、r Power Amplifiers for Wireless Power TXProposed Hybrid Class-ED PAMeasurement ResultsConclusions9 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferencePropos
13、ed Hybrid Class-ED PA Power devices from both Class-D and Class-E PA CP:removed to extend VACpulse width10 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits Conferen
14、ceProposed Hybrid Class-ED PA Power devices from both Class-D and Class-E PA CP:removed to extend VACpulse width Class-E:LC+ML11 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-S
15、tate Circuits ConferenceProposed Hybrid Class-ED PA Power devices from both Class-D and Class-E PA CP:removed to extend VACpulse width Class-E:LC+ML Class-D:MH+ML12 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging T
16、o-Go 2024 IEEE International Solid-State Circuits ConferenceProposed Hybrid Class-ED PA LC:continuous power from VIN C1&MH:clamping|VAC|at VH-VH=20V-20V LDMOS Higher Output Power than Class-E PA Same average value,wider pulse width Larger RMS value13 of 3527.1:A Differential Hybrid Class-ED Power Am
17、plifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceOperation PrincipletD1,2:deadtime for ZVSdT:average pulse width14 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%P
18、eak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceOperation PrincipleDuring 1 MHon VAC=VH ITX:positive half cycle IL:dropping()(),1 cos 2 2 L DCMIdId=Charge Balance of C1:15 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Max
19、imum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceOperation PrincipleDuring tD1 ITX IL VACdrops to 0V ZVS turn-on of ML16 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Effici
20、ency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceOperation PrincipleDuring 2 MLon|VAC|=0 ITX:mainly in negative half cycle IL:ramping up IS1=|IL|+|ITX|,large MLrequiredINHVVd=Volt-Second Balance of LC:Regulation principle for VH17 of 3527.1:A Differential
21、Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceOperation PrincipleDuring tD2 ITX IL VACrise to VH ZVS turn-on of MH18 of 3527.1:A Differential Hybrid Class-ED Power Amplifier wi
22、th 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceTX Power Comparison()()_1 cos 2 2 TXEDIN MdPV Id TX Power of Class-ED:1TXIN MPV I=224TXIN MPV I=+=+TX Power of Class-D:TX Power of Class-E:()()where 0.28 0.435d,19
23、of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceDifferential Hybrid Class-ED PADifferential Structure Double the TX Power20 of 3527.1:A Differential Hybr
24、id Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceDifferential Hybrid Class-ED PADifferential Structure Double the TX PowerReduce Voltage Stress21 of 3527.1:A Differential Hybrid Class
25、-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceDifferential Hybrid Class-ED PADifferential Structure Double the TX PowerReduce Voltage StressDuty Controller Regulate VH1and VH122 of 3527.1:
26、A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceDifferential Hybrid Class-ED PADifferential Structure Double the TX PowerReduce Voltage StressDuty Controller Regul
27、ate VH1and VH1HS Driver ZVS for S2and S423 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceDifferential Hybrid Class-ED PADifferential Structure Double t
28、he TX PowerReduce Voltage StressDuty Controller Regulate VH1and VH1HS Driver ZVS for S2and S4ZVS Controller ZVS for S1and S324 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-Sta
29、te Circuits ConferenceDuty Cycle Controller,ZVS Controller and HS Driver RA:RB=3:1 tCP1:delay compensation R1:R2=19:1,off-chip tCP2=tD2+tB1-tB2 CC1=10nF,off-chip25 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To
30、-Go 2024 IEEE International Solid-State Circuits ConferenceOutlineMotivationsPrior Power Amplifiers for Wireless Power TXProposed Hybrid Class-ED PAMeasurement ResultsConclusions26 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless
31、 Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceChip Micrograph 0.18m BCD Process 20V device for S14 5V device for control circuit27 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go
32、 2024 IEEE International Solid-State Circuits ConferenceMeasurement Setup28 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceMeasured Power and Efficienci
33、es 29 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceMeasured Waveforms 30 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Pow
34、er and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceMeasured Waveforms 31 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE Internatio
35、nal Solid-State Circuits ConferenceSimulated Power Loss Breakdown POUT=28.7W,PIN=35.8W,P=7.1W PA=94.2%,COIL=87.2%,RECT=97.6%32 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-Sta
36、te Circuits ConferenceThermal Map33 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceComparison Table34 of 3527.1:A Differential Hybrid Class-ED Power Amp
37、lifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceConclusions A differential hybrid Class-ED PA is proposed and verified for wirelessfast charging to-go.The amplitude of the AC voltages is well-regulated a
38、t 20V.When operating at 6.78MHz,a peak E2E efficiency of 82%is achievedwhen charging power is 10W,and a peak charging power of 27W isachieved with a E2E efficiency of 75.9%.The proposed PA is fabricated in the BCD process,no GaN FET is used.35 of 3527.1:A Differential Hybrid Class-ED Power Amplifier
39、 with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE International Solid-State Circuits ConferenceThank you36 of 3527.1:A Differential Hybrid Class-ED Power Amplifier with 27W Maximum Power and 82%Peak E2E Efficiency for Wireless Fast Charging To-Go 2024 IEEE
40、 International Solid-State Circuits ConferencePlease Scan to Rate This PaperA 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power AmplifierJunfei Ge,Yu Lu,Ruoshu Yang,Dongfang Pan,Lin Cheng University of Science a
41、nd Technology of China,China 2024 IEEEInternational Solid-State Circuits Conference1 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power AmplifierOutline Motivation Proposed WPT system Measurement Resu
42、lts and Comparison Conclusions Local RX Voltage Regulation Wireless TX Power Regulation 2024 IEEEInternational Solid-State Circuits Conference27.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power Amplifier2 o
43、f 37Motivation 2024 IEEEInternational Solid-State Circuits Conference3 of 37Wireless Charging Technology植入式醫療器件手機電動汽車掃地機器人無線充電芯片Implantable devicesMobile phoneSweeping robotElectric vehicleWireless ChargingTechnology27.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireles
44、s Mode-Recognition Technique and a Fully-On/off Class-D Power Amplifier Widely used in implantable medical devices,consumer electronics,electric vehicle,etc.Composed of a transmitter(TX),a receiver(RX),and LC resonant coilsWireless Power Transfer(WPT)SystemLiterature Review 2024 IEEEInternational So
45、lid-State Circuits Conference4 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power AmplifierDegrades End-to-End(E2E)efficiency when load changedReconfigurable regulated rectifier is proposed:Cheng,JSSC
46、18 7Good Voltage regulationHigh efficiency(Only RX side)End-to-End(E2E)efficiency =Single stage with voltage regulation at RX sideTX side is remained unregulatedLiterature Review 2024 IEEEInternational Solid-State Circuits Conference5 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfe
47、r System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power AmplifierDegrades End-to-End(E2E)efficiency when load changedHigher E2E efficiencyGoal:TX power regulationReconfigurable regulated rectifier is proposed:Cheng,JSSC18 7Good Voltage regulationHigh efficiency(Only RX
48、side)End-to-End(E2E)efficiency =Single stage with voltage regulation at RX sideTX side is remained unregulatedSimple and efficient global regulation scheme Need LSK switch and LSK signal generator at RX sideNeed continuously detect the LSK signal at TX side LSK backscattering reusing the power link
49、as feedback link:LSK(Load Shift Keying)Backscattering 2024 IEEEInternational Solid-State Circuits Conference6 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power Amplifier(Huang,JSSC18 3;Tang,ISSCC215)
50、TX cannot be fully off under light load=SLSKON :RRX=RRECSLSKOFF:RRX=RSHORTLSK(Load Shift Keying)Backscattering 2024 IEEEInternational Solid-State Circuits Conference7 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/
51、off Class-D Power AmplifierTang,ISSCC21 5 Simple system structure,without extra component Need LSK switch and LSK signal generator at RX sideTwo stage with voltage regulation at RX sideTX cannot be completely turned off under light loadDecreased E2E efficiencyWithout LSK switch and LSK signal genera
52、tor at RX sidePhase difference between the current and voltageTX cannot be completely turned off under light loadInherent Wireless Phase Shift Control 2024 IEEEInternational Solid-State Circuits Conference8 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mo
53、de-Recognition Technique and a Fully-On/off Class-D Power AmplifierBai,JSSC23 6 Wireless Phase Shift Control:Decreased E2E efficiencyWithout LSK switch and LSK signal generator at RX sidePhase difference between the current and voltageTX cannot be completely turned off under light loadInherent Wirel
54、ess Phase Shift Control 2024 IEEEInternational Solid-State Circuits Conference9 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power AmplifierBai,JSSC23 6 Wireless Phase Shift Control:Decreased E2E effi
55、ciencyGoal 1:Voltage regulation with single stage at RX side Goal 2:TX can be fully off under light load Higher E2E efficiencyOutline Motivation Proposed WPT system Measurement Results and Comparison Conclusions Local RX Voltage Regulation Wireless TX Power Regulation 2024 IEEEInternational Solid-St
56、ate Circuits Conference10 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power Amplifier Information exchange between TX and RX RX local voltage regulation TX wireless power regulationThe Proposed WPT S
57、ystem 2024 IEEEInternational Solid-State Circuits Conference11 of 37LSK data link without a sensing coil and LSK switchFully on/off class D PA27.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power Amplifier0X/
58、1X 2-mode rectifierOperation Principle of LSK Data Link 2024 IEEEInternational Solid-State Circuits Conference12 of 37 Equivalent impedance of 1X/0X mode Equivalent impedance of the RXRLac=(1X mode)RLac=0(0X mode)Req=+(M=k)27.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a
59、Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power Amplifier1X Mode:RLacReq0X Mode:RLacReqIPIPDetecting the current IPof the TX coilObtaining the mode information of the RX Outline Motivation Proposed WPT system Measurement Results and Comparison Conclusions Local RX Voltage Regula
60、tion Wireless TX Power Regulation 2024 IEEEInternational Solid-State Circuits Conference13 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power Amplifier Adjust the output voltage VOUTby adjusting IacOp
61、eration Principle of 2-Mode RX 2024 IEEEInternational Solid-State Circuits Conference14 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power AmplifierIO(1X)=ImaxIO(0X)=0IO=Imax Duty(1X/0X)(0,Imax)VOUT=I
62、O RLCheng,JSSC18 7PWM Control Smooth switching between two working modesOperation Principle of 2-Mode RX 2024 IEEEInternational Solid-State Circuits Conference15 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off C
63、lass-D Power Amplifier PWMRX=1 Full-bridge mode(1X mode)PWMRX=0 Freewheeling Mode(0X mode)Single-stage voltage regulation Without extra LSK switch and LSK signal generator Operation Principle of 2-Mode RX 2024 IEEEInternational Solid-State Circuits Conference16 of 3727.2:A 6.78-MHz 79.5%-Peak-Effici
64、ency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power AmplifierOutline Motivation Proposed WPT system Measurement Results and Comparison Conclusions Local RX Voltage Regulation Wireless TX Power Regulation 2024 IEEEInternational Solid-State
65、Circuits Conference17 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power Amplifier Fully off Class-D PAOperation Principle of Power Regulation 2024 IEEEInternational Solid-State Circuits Conference18
66、of 37Issue:Unable to continue detecting the PWMRXImproved E2E efficiency 27.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power Amplifier Cannot reactivate the PA Stop workingOperation Principle of Power Regul
67、ation 2024 IEEEInternational Solid-State Circuits Conference19 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power Amplifier Problem:Turn off the PA completelyUnable to reactive the PALSK data linkIPOp
68、eration Principle of Power Regulation 2024 IEEEInternational Solid-State Circuits Conference20 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power AmplifierCLKTXto reactive the PA Problem:Turn off the
69、PA completely Solution:Identify the RX clock signalUnable to reactive the PALSK data linkIP Fully On/off class D PAOperation Principle of Fully On/off PA 2024 IEEEInternational Solid-State Circuits Conference21 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireles
70、s Mode-Recognition Technique and a Fully-On/off Class-D Power Amplifier PWMRX=1 PWMTX=1Fully on class D PA PWMRX=0 PWMTX=0Fully off class D PA PWMRXDetection at TX Side 2024 IEEEInternational Solid-State Circuits Conference22 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System
71、using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power Amplifier Without external detection components and sensing coil Smode_RX=PWMRX Detect the PWMRXsignal in time The role of PLL:Operation Principle of the PLL 2024 IEEEInternational Solid-State Circuits Conference23 of 3727.
72、2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power Amplifier Align the rising edge of CLKTX_Delay with rising edge of Smode_RX Generate a signal CLKTXwith a lead Smode_RXsignal of 150ns PWMTX Generator 2024 I
73、EEEInternational Solid-State Circuits Conference24 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power Amplifier Rising edge of CLKTXRising edge of PWMTX Falling edge of Smode_RXFalling edge of PWMTXPW
74、MRX PWMTXPA is opened before RX into 1X modeOperation Principle Overview 2024 IEEEInternational Solid-State Circuits Conference25 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power AmplifierOutline Mo
75、tivation Proposed WPT system Measurement Results and Comparison Conclusions Local RX Voltage Regulation Wireless TX Power Regulation 2024 IEEEInternational Solid-State Circuits Conference26 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Te
76、chnique and a Fully-On/off Class-D Power Amplifier 2024 IEEEInternational Solid-State Circuits Conference27 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power AmplifierTechnologyAreaTX Chip0.18m BCD1.
77、86mm2RX Chip0.18m BCD1.4mm2Chip MicrographMeasurement:Testbench Setup 2024 IEEEInternational Solid-State Circuits Conference28 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power AmplifierMeasurement R
78、esultsStart-up mode WaveformsIOUT=500mA 2024 IEEEInternational Solid-State Circuits Conference29 of 37RX Start_OK Voltage regulationTX Start_OK Power regulation27.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D
79、Power AmplifierThe proposed WPT system starts smoothlyMeasurement ResultsSteady State Waveforms 2024 IEEEInternational Solid-State Circuits Conference30 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Po
80、wer AmplifierThe system can operate smoothly over all work conditionsMeasurement ResultsLoad Transient Response Waveforms 2024 IEEEInternational Solid-State Circuits Conference31 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and
81、 a Fully-On/off Class-D Power AmplifierLoad transient(16mA-80mA):verifying the stability of the WPT systemMeasurement ResultsPeak E2E efficiency 79.5%POUT=0.5WUp to 20.1%improvement compared to RX Reg.onlyGood load regulation 0.1mV/mA 2024 IEEEInternational Solid-State Circuits Conference32 of 3727.
82、2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power AmplifierSummary and Comparison 2024 IEEEInternational Solid-State Circuits Conference33 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer S
83、ystem using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power AmplifierSummary and Comparison 2024 IEEEInternational Solid-State Circuits Conference34 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Full
84、y-On/off Class-D Power AmplifierOutline Motivation Proposed WPT system Measurements and Comparison Conclusions Local RX Voltage Regulation Wireless TX Power Regulation 2024 IEEEInternational Solid-State Circuits Conference35 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System u
85、sing a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power Amplifier 2024 IEEEInternational Solid-State Circuits ConferenceConclusions36 of 37A High E2E Efficiency WPT System is ProposedAt RX Side Local voltage regulation with single power stage Without LSK switch and LSK signal gen
86、erator At TX Side Fully on/off class D PA Integrated mode recognition technology Good load regulation Enhanced E2E efficiency The proposed WPT system27.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power Ampli
87、fierThank you!2024 IEEEInternational Solid-State Circuits Conference37 of 3727.2:A 6.78-MHz 79.5%-Peak-Efficiency Wireless Power Transfer System using a Wireless Mode-Recognition Technique and a Fully-On/off Class-D Power AmplifierPlease Scan to Rate This PaperIEEE Biomedical Circuits and Systems Co
88、nference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices1 of 48Hyun-Su Lee,Kyeongho Eom,and Hyung-Min LeeA 90.8%-Effic
89、iency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Controlfor Wirelessly-Powered Implantable DevicesKorea University,Seoul,KoreaIEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-E
90、fficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices2 of 48Outline Introduction to Wireless Power Transfer(WPT)Concept of Proposed SIMO R3 Circuit Implementation Measurement Results Conclusio
91、nIEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices3 of 48Outline Introdu
92、ction to Wireless Power Transfer(WPT)Concept of Proposed SIMO R3 Circuit Implementation Measurement Results ConclusionIEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs
93、in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices4 of 48WPT ApplicationsWireless power transfer(WPT)is widely used for various applicationsInternet of ThingsWireless Cellphone ChargerImplantable Medical Device(IMD)RFID TagBrown Institute Brain SciencePar
94、kinsonss NSWAprendiendo Arduino Inc.Shenzhen Xinyetong Inc.Promate Inc.IEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Co
95、ntrol for Wirelessly-Powered Implantable Devices5 of 48WPT in IMD SoC(Stim.&Record.&Process.)WPT:TXL2C2Tank in RXAC-DC converter SystemApplications of IMD:Neural Stimulation,Recording,Biomedical SoC,etcDifferent supplies for Stimulation(5.0V),Recording(3.3V),Processor(1.0V)StimulationVREGSkinVINNC1L
96、1VSL2C2kPTXPRXPLAC-DCConverterGNDTXRXRLCLInductive LinkRecordingHHS Public AccessSt.Jude MedicalApplications in IMDProcessorUCLA PDA with a pair of coilsIEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulat
97、ing Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices6 of 482-Stage:Rectifier+Two RegulatorsAC-DC Rectifier +Two Regulators(or DC-DC Converters)2-stage structure:power conversion+two regulationsLow efficiency(ex.90%x(90%+90
98、%)=81%)Large size(2 external caps:CRECand CL)VREG1SkinVINNC1L1VSL2C2kPTXPRXAC-DC RectifierDC-DC Conv.CRECVRECGNDTXRX2-Stage RegulatorRL1CL1Inductive Link2 Reg.RL2CL2VREG2VINP with a pair of coils-1DC-DC Conv.-2IEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuit
99、s Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices7 of 481-Stage Dual-Output R31-Stage Dual-Output Resonant Regulating Rectifier(R3)1-stage dual-output R3:power co
100、nversion+2 output-regulationHigh efficiency(up to 90%)Compact size(CRECcan be deleted)VREG1SkinVINNC1L1VSL2C2kPTXPRXAC-DC RectifierDC-DC Conv.CRECVRECGNDTXRX2-Stage Regulator1-Stage Regulator3High EffRL1J Small SizeCL1Inductive Link2 Reg.RL2CL2VREG2Dual output RVINNVREG1VREG2VINPVINPJ ac power 2 sta
101、ble dc power with a pair of coils-1DC-DC Conv.-2IEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Po
102、wered Implantable Devices8 of 48Problems of Conventional Dual-Output R3sLow VSG(VINN VG0)in P6Narrow output range of VREG2(2)(1)High RON(on-resistance)Entry in sub-threshold mode4VINVIN5VREG1VREG2VINNVINPISSCC 2023CICC 2023VREG1VREG2VREG1VREG2GNDVREG1VREG2VREG1VINNVINPVREG2GNDVREG1VREG2 state A Doub
103、ler state BHigher VREG2VREG1VINNVINP,Feb.,Apr.structure VREG1VSGMiddle Outlet TechniqueDifferential Grouping TechniqueN2N1P5P6P5P7VREG1 VREG2 VIN,peakP8N3C3C4Dual-Output Voltage Doubler RDual-Output Synchronized PFM R33VSGVINNVRECVG0P6VREG2,MAX VREG2,MINcf)PFM:pulse frequency modulationVREG,1VREG,2M
104、AXIEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices9 of 48Problems of Co
105、nventional Dual-Output R3sHigh output rippleLow PDLLow number of outputs(3)(5)(4)Low efficient in DVS stim.Unstable suppliescf)DVS:dynamic voltage scalingcf)PDL:power delivered to the loadUnapplicable for high-power system4VINVIN5VREG1VREG2VINNVINPISSCC 2023CICC 2023VREG1VREG2VREG1VREG2GNDVREG1VREG2
106、VREG1VINNVINPVREG2GNDVREG1VREG2 state A state BVREG2VREG1VINNVINP,Feb.,Apr.ripplerippleMiddle Outlet TechniqueDifferential Grouping TechniqueOnly two outputsN2N1P5P6P5P71 output in a half cycleOnly two outputs1 output in a half cycleP8N3C3C4Dual-Output Voltage Doubler RDual-Output Synchronized PFM R
107、33IEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices10 of 48Outline Intro
108、duction to Wireless Power Transfer(WPT)Concept of Proposed SIMO R3 Circuit Implementation Measurement Results ConclusionSingle-input multi-output(SIMO)R3IEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulat
109、ing Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices11 of 48Conceptual Diagram of Proposed SIMO R3SIMO R3generates three outputs in a half cycleThree regions are in a half cycle:peak left(PL),peak center(PC),peak right(PR)
110、Proposed SIMO R Generating 3 Outputs in a Half CycleVREG,PLVREG,PCVREG,PRGNDVTH peak left peak right peak centerGenerate 3 of VREGVREG,PLVREG,PCVREG,PR peak left peak right peak centerVREG,PLVREG,PCVREG,PR in a half period3VINNVINPVREG,PLVREG,PCVREG,PRIEEE Biomedical Circuits and Systems Conference2
111、024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices12 of 48Conceptual Diagram of Proposed SIMO R3(1)High VSG(VINNVG0)in PP
112、L&PPRLow RON(on-resistance)Prohibits entry in sub-thresholdVSGVINNVRECVG0PPLVGin PL&PR reach down to VTHNegative Threshold Gate Driver(NTGD)Proposed SIMO R Generating 3 Outputs in a Half CycleVREG,PLVREG,PCVREG,PRGNDVTH peak left peak right peak center Higher VSGVREG,PLVREG,PCVREG,PR peak left peak
113、right peak centerVREG,PLVREG,PCVREG,PRJ EffGateThreshold DriverVSG3VINNVINPNegative(1)IEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed
114、 Multi-Phase Control for Wirelessly-Powered Implantable Devices13 of 48Conceptual Diagram of Proposed SIMO R3(2)Wide output range in VREG,PL&PRVREG2,MAX VREG2,MINProposed SIMO R Generating 3 Outputs in a Half CycleVREG,PLVREG,PCVREG,PRGNDVTH peak left peak right peak centerVREG,PLVREG,PCVREG,PR peak
115、 left peak right peak centerVREG,PLVREG,PCVREG,PRJ Wide rangeVSGMAX VREG,PC VREG,PL =2.5V 3HybridHigh/VINNVINPLowCMP(2)Large detection point where VINN=VREG,PL or PR Hybrid High/LowComparator(HCMP)VREG,1VREG,2MAXIEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circu
116、its Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices14 of 48Conceptual Diagram of Proposed SIMO R3(3)Low output ripple(4)High PDL(5)High number of regul.-outputsDi
117、stributed Multi-Phase Control in a Half CycleProposed SIMO R Generating 3 Outputs in a Half CycleVREG,PLVREG,PCVREG,PRGND peak left peak right peak centerGenerate 3 of VREGVREG,PLVREG,PCVREG,PR peak left peak right peak centerVREG,PLVREG,PCVREG,PRSmall output ripple in a half periodJ No.of output 3
118、VSGrippleHigh PDLJ 3J VINNVINPJ(3)(4)(5)IEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Im
119、plantable Devices15 of 48Principle of SIMO R3(1):Three Gate ControlsSIMO R3generates three outputs in a half cycleThree gate control signals(VG,PL,VG,PC,VG,PR)are located in a half cycleTiming Diagram of SIMO R Generating Three-Outputs in a Half CycleVREG,PLVREG,PCVREG,PRtP,PCtS,PCVSSVTH controlVINN
120、 peak left peak center peak right tS,PLtP,PLtE,PRtP,PRtE,PC3VG,PCVG,PLVG,PRIEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phas
121、e Control for Wirelessly-Powered Implantable Devices16 of 48Principle of SIMO R3(2):Half-Wave VoltagesTXtransfers wireless power to L2C2resonant tank in RXNMOS cross-coupled pair transistors(N1,N2)transform full-wave voltage to half-wave voltages(VINN,VINP)Timing Diagram of SIMO R Generating Three-O
122、utputs in a Half CycleVREG,PLVREG,PCVREG,PRtP,PCtS,PCVSSVTHVINN peak left peak center peak right SIMO RtS,PLtP,PLtE,PRtP,PRtE,PC3L2C2N2N1VINNVINPVG,PCVG,PLVG,PR3SkinC1L1VSkTXWireless PowerIEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.
123、8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices17 of 48Principle of SIMO R3(3):Peak Center(PC)Power path:L2C2tank Load RL2 through PPCFeedback in PC(FBPC):VREG,PCVTG,PC (Forward cont
124、rol)Peak Center(PC)Timing Diagram of SIMO R Generating Three-Outputs in a Half CycleVREG,PLVREG,PCVREG,PRtP,PCtS,PCVSSVTH controlVINN peak centerCL2RL2VREG,PCVTG,PCP4P8CMPPL HLSELPWMEnd protectionNTGDVG,PL offset FOnlyHLsensereturnVTG,PC=FBPCoffset Roffset FPCSIMO RtE,PC3L2C2N2N1VINNVINPVG,PCVG,PCTC
125、MPPCPPC3DBBIEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices18 of 48Prin
126、ciple of SIMO R3(4):PC controls PL&PRPC controls both peak left(PL)&peak right(PR)PCPL:protection signal PCPR:PWM start signalPeak Center(PC)cf)PWM:pulse width modulationtS,PCVE,PLTiming Diagram of SIMO R Generating Three-Outputs in a Half CycleProtection peak left signal forVREG,PLVREG,PCVREG,PRtP,
127、PCtS,PCVSSVTHEnd prot.controlVINN peak centerNTGDCL2RL2VREG,PCVTG,PCP4P8CMPPL HLSELPWMEnd protectionNTGDVG,PL offset FOnlyHLsensereturnVTG,PC=FBPCoffset Roffset FPCSIMO RtS,PLtP,PLtE,PCVS,PRPWM start signal for peak righttE,PCEnd prot.3L2C2N2N1VINNVINPVG,PCVG,PCTCMPPCPPC3 peak leftPL peak rightPRDBB
128、IEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices19 of 48Principle of SI
129、MO R3(5):Peak Left(PL)Peak Left(PL)Feedback in PL(FBPL):VREG,PLVTG,PL (Forward control)Power path:L2C2tank Load RL1 through PPLtS,PCVE,PLTiming Diagram of SIMO R Generating Three-Outputs in a Half CycleProtection peak left signal forVREG,PLVREG,PCVREG,PRtP,PCtS,PCVSSVTHEnd prot.controlVINN peak left
130、 peak centerNTGDCL1RL1VREG,PLP4P8CMPPL HLSELPWMEnd protectionNTGDVG,PL offset FOnlyHLVG,PLsensereturnVTG,PLFBPL only offset FPLSIMO RtS,PLtP,PLTCMPPL3L2C2N2N1VINNVINPHybrid H/L VG,PCVG,PLPPL3Comparator:HCMPVTG,PL=DBBIEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State C
131、ircuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices20 of 48Principle of SIMO R3(6):Peak Right(PR)Peak Right(PR)Feedback in PR(FBPR):VREG,PRVTG,PR (Reverse con
132、trol)Power path:L2C2tank Load RL3 through PPR VINNgoes downCL3VREG,PRP4P8CMPPL HLSELPWMEnd protectionNTGDVG,PL offset FOnlyHLsensereturnVTG,PRFBPRTiming Diagram of SIMO R Generating Three-Outputs in a Half CycleVREG,PLVREG,PCVREG,PRVSSVTH ctrlreverseVINN peak right NTGDPRSIMO R only offset RtE,PRtP,
133、PRtE,PCRL3End prot.L2C2N2N1VINNVINPHybrid H/L VG,PRVG,PRTCMPPRPPR3ComparatorVS,PRPWM start signal for peak righttE,PC:HCMPVTG,PR=DBBIEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generat
134、ing 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices21 of 48Principle of SIMO R3(7):Overall StructurePeak Right(PR)Each TCMP is uniquely designed for specific regional needs.Three feedbacks are in a half cyclePeak Left(PL)Peak Center(PC)Total
135、comparatorCL3VREG,PRVTG,PRP4P8CMPPL HLSELPWMEnd protectionNTGDVG,PL offset FOnlyHLsensereturnVTG,PR=FBPRtS,PCVE,PLTiming Diagram of SIMO R Generating Three-Outputs in a Half CycleProtection peak left signal forVREG,PLVREG,PCVREG,PRtP,PCtS,PCVSSVTHEnd prot.control control ctrlreverseVINN peak left pe
136、ak center peak right NTGDCL1RL1VREG,PLVTG,PLP4P8CMPPL HLSELPWMEnd protectionNTGDVG,PL offset FOnlyHLVG,PLsensereturnVTG,PL=FBPL only offset FCL2RL2VREG,PCVTG,PCP4P8CMPPL HLSELPWMEnd protectionNTGDVG,PL offset FOnlyHLsensereturnVTG,PC=FBPCoffset Roffset FPLPCPRSIMO R only offset RtS,PLtP,PLtE,PRtP,PR
137、tE,PCVS,PRPWM start signal for peak righttE,PCRL3End prot.End prot.TCMPPL33 feedback loops in a half periodL2C2N2N1VINNVINPHybrid H/L VG,PCVG,PLVG,PRPPLDBBVG,PCTCMPPCPPCDBBVG,PRTCMPPRPPRDBB3ComparatorIEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conferen
138、ce27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices22 of 48Outline Introduction to Wireless Power Transfer(WPT)Concept of Proposed SIMO R3 Circuit Implementation Measurement
139、Results ConclusionIEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices23 of
140、 48Top Structure of SIMO R3 w/Detailed TCMPs 3 FBs in a half cycle Protection signals Hybrid H/L Comp.(HCMP)Wide detection range Negative ThresholdHigh eff.Reverse control in PRHigh eff.PRin each outputs Safe operationPL Total Comparator(TCMPPL)PC Total Comparator(TCMPPC)PR Total Comparator(TCMPPR)V
141、TGVREGDelayOutPL PWM Ctrl.tS,PCVTHVG,PLVP,PLVCMP,PLtP,PLtS,PLVTHDelayOutRSQPR DriverNTGDEndStartPR PWM Ctrl.VTHVINNVTH3VTG,PRVG,PRVP,PRVCMP,PR CMPtP,PRtE,PRReverse ctrl.tech.RSQVQ,PRtE,PCVTGVREGDelayOutPC PWM Ctrl.VTG,PCVG,PCVP,PCVCMP,PCtP,PCtE,PCGNDtS,PCtP,PCtE,PCtS,PC&VINNtE,PCtS,PCCL3VREG,PRVTG,P
142、RP4P8CMPPL HLSELPWMEnd protectionNTGDVG,PL offset FOnlyHLsensereturnVTG,PR=FBPRtS,PCVE,PLTiming Diagram of SIMO R Generating Three-Outputs in a Half CycleProtection peak leftVTHPR Hybrid signal forVREG,PLVREG,PCVREG,PRtP,PCtS,PCVSSVTHEnd prot.control control ctrlreverseVINN peak left peak center pea
143、k right NTGDVINNVTG,PL:CL1RL1VREG,PLVTG,PLP4P8CMPPL HLSELPWMEnd protectionNTGDVG,PL offset FOnlyHLVG,PLsensereturnVTG,PL=FBPL only offset FCL2RL2VREG,PCVTG,PCP4P8CMPPL HLSELPWMEnd protectionNTGDVG,PL offset FOnlyHLsensereturnVTG,PC=FBPCoffset Roffset FPLPCPRSIMO R only offset RtS,PLtP,PLtE,PRtP,PRtE
144、,PCVS,PRPWM start signal for peak righttE,PCRL3End prot.End prot.TCMPPL33 feedback loops in a half periodL2C2N2N1VINNVINPBridgeVTGVREG CMPHybrid H/L VG,PCVG,PLVG,PRCGVREG,PC/2VTG,PRH/LHLVREG,PR3VREG,PC/2VTG,PLH/L Mode Selector CMPPL Hybrid H/LHLVREG,PLVREG,PCConv.PPLDBBVG,PCTCMPPCPPCDBBVG,PRTCMPPRPP
145、RDBB3ComparatorPLRSQPL DriverNTGDEndStartProtVTHEnd Prot.RSQPC DriverEndStartProtEnd ProtectionVS,PRVE,PLPL&PR PC controlsH/L Mode SelectorPR(NTGD)Gate Driver IEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant R
146、egulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices24 of 48PR Total Comparator(TCMPPR):Reverse Ctrl.PR Reverse controlTCMPPRconsists of(4)Bridge&PR driver(1)PR hybrid H/L CMP(HCMPPR)(3)PR PWM controller(PWMPR)(5)NTG
147、DPR Total Comparator(TCMPPR)DelayOutRSQPR DriverNTGDEndStartPR PWM Ctrl.VTHVINNVTH3VTG,PRVG,PRVP,PRVCMP,PR CMPtP,PRtE,PRReverse ctrl.tech.RSQVQ,PRtE,PCVTHPR Hybrid:BridgeVTGVREGVREG,PC/2VTG,PRH/LHLVREG,PRH/L Mode SelectorPR:Tricky to design(2)PR H/L Selector(SELPR)IEEE Biomedical Circuits and System
148、s Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices25 of 48Forward ControlVS.Reverse ControlVREG,PRVREG,PCVIN
149、N controlForwardPCONDPCEForward Control in PR VG,PRPWMPR:tE,PCVREG,PR controlReverseVINNVREG,PCPCONDReverse Control in PR PCEVG,PRPR PWM Ctrl.:tE,PRLarge of(VINN VREG,PR)Large PCONDLow PCE Small of(VINN VREG,PR)Low PCONDHigh PCE cf)PCOND:conduction loss,PCE:power conversion lossIEEE Biomedical Circu
150、its and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices26 of 48PR Hybrid High/Low Comp.(1):Introduc
151、tionwide detection point where VINN=VREG,PR is required in comparatorPR Total Comparator(TCMPPR)DelayOutRSQPR DriverNTGDEndStartPR PWM Ctrl.VTHVINNVTH3VTG,PRVG,PRVP,PRVCMP,PR CMPtP,PRtE,PRReverse ctrl.tech.RSQVQ,PRtE,PCVTHPR Hybrid:BridgeVTGVREGVREG,PC/2VTG,PRH/LHLVREG,PRH/L Mode SelectorPRVS,PR01 P
152、R Hybrid High/Low Comparator(HCMPPR)SPR,MSPR,L,BVCMP,PRVINNVREG,PRVREG,PCVPR,L,BVPR,H,BVSSLow VINN SPR,L=0N7N6SPR,M=0Low VREG,PRHigh VINN SPR,H=0P14P13VREG,PCHigh VREG,PRSPR,M=1VSSSPR,LVSSSPR,H,BSPR,HVSSVA1M1High-Side Low-Side To enable lower VREG,PR,VREG,PLVREG,PCVREG,PRGND peak rightVINNVTHTiming
153、DiagramIEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices27 of 48PR Hybri
154、d High/Low Comp.(2):Wide Detection1)VREG,PR VREG,PC/2PMOS-input High VINNdet.NMOS-input Timing DiagramVCMP,PRVREG,PRVINNVREG,PCVSStS,PRtE,PR offset Fneedless offset RcontrolledCMP turns onCMP turns offCMP turns onCMP turns offWide detectionVINN=VREG,PRpoint where01 PR Hybrid High/Low Comparator(HCMP
155、PR)SPR,MSPR,L,BVCMP,PRVINNVREG,PRVREG,PCVPR,L,BVPR,H,BVSSLow VINN SPR,L=0N7N6SPR,M=0Low VREG,PRHigh VINN SPR,H=0P14P13VREG,PCHigh VREG,PRSPR,M=1VSSSPR,LVSSSPR,H,BSPR,HVSSVA1M1High-Side Low-Side IEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3
156、:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices28 of 48PR Hybrid High/Low Comp.(3):Power EfficientVREG,PLVREG,PCVREG,PRGNDVTH peak left peak right peak centerVREG,PLVREG,PCVREG
157、,PR peak left peak right peak centerVREG,PLVREG,PCVREG,PRVINNVINPVREG,PLVREG,PCVREG,PRGNDVTH peak left peak right peak centerVREG,PLVREG,PCVREG,PR peak left peak right peak centerVREG,PLVREG,PCVREG,PRVINNVINP1-output regulation mode2-output regulation modeHCMPPRcan turn off both NMOS-input&PMOS-inpu
158、t CMPsPower efficient 1-/2-outputmode01 PR Hybrid High/Low Comparator(HCMPPR)SPR,MSPR,L,BVCMP,PRVINNVREG,PRVREG,PCVPR,L,BVPR,H,BVSSLow VINN SPR,L=0N7N6SPR,M=0Low VREG,PRHigh VINN SPR,H=0P14P13VREG,PCHigh VREG,PRSPR,M=1VSSSPR,LVSSSPR,H,BSPR,HVSSVA1M1High-Side Low-Side IEEE Biomedical Circuits and Sys
159、tems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices29 of 48PR Hybrid High/Low Comp.(4):Offset-Control PR r
160、egion:Power saving01 SPR,MSPR,L,BVCMP,PRVINNVREG,PRVREG,PC needlessVPR,L,BVPR,H,BVSSoffset F:Low VINN SPR,L=0N7N6Low VREG,PRHigh VINN SPR,H=0P14P13VREG,PCHigh VREG,PR needlessoffset F:VSSSPR,LVSSoffset RSPR,H,BSPR,HVSSoffset RM1High-Side Low-Side Offset Control:Compensates delay when VCMP,PR=VREG,PR
161、1)Offset Rear:VCMP,PRrising timecurrent injection technique 2)Offset Front:VCMP,PRfalling timeis not required in PRTiming Diagram of SIMO R Generating Three-Outputs in a Half CycleVREG,PLVREG,PCVREG,PRVSSVTHVINN peak right tE,PRtP,PR3VG,PRDoes not need to detectVCMP,PRIEEE Biomedical Circuits and Sy
162、stems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices30 of 48PR Hybrid High/Low Selector(SELPR)SELPRgenerat
163、es SPR,H,SPR,L,SPR,Mand controls HCMPPR.PR Total Comparator(TCMPPR)DelayOutRSQPR DriverNTGDEndStartPR PWM Ctrl.VTHVINNVTH3VTG,PRVG,PRVP,PRVCMP,PR CMPtP,PRtE,PRReverse ctrl.tech.RSQVQ,PRtE,PCVTHPR Hybrid:BridgeVTGVREGVREG,PC/2VTG,PRH/LHLVREG,PRH/L Mode SelectorPRVS,PRVREG,PCVTG,PRSTR,PRVSSSPR,HVSSSPR
164、,MSPR,LVSSVCMP,PRHL01M2M4M3PR High/Low Mode Selector(SELPR)VREG,PRVINN010101 HCMPPRCase for peak right CMP1VA2IEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Hal
165、f Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices31 of 48PR Pulse Width Modulation Ctrl.(PWMPR)Pre-biasing techniqueSafe operation)SPR,PRE=01)SPR,PRE=12Smooth transitionVCC,PR=VTHVCC,PR=VOTAPR Total Comparator(TCMPPR)DelayOutRSQPR DriverNTGDEndStartPR PWM Ctrl.V
166、THVINNVTH3VTG,PRVG,PRVP,PRVCMP,PR CMPtP,PRtE,PRReverse ctrl.tech.RSQVQ,PRtE,PCVTHPR Hybrid:BridgeVTGVREGVREG,PC/2VTG,PRH/LHLVREG,PRH/L Mode SelectorPRVS,PROTACurrent-Controlled Delay lineVOTAVQ,PRM5VTHPR Pulse Width Modulation Controller(PWMPR)Pre-Biasing tech.SPR,PREVCC,PRVTG,PRVREG,PRReverse P16P1
167、7VP,PRN17Bridge Circ.01tE,PCtP,PR control tech.interlinked P16&P17 areVCC,PRPre-Biasing TechniqueSPR,PRE:0 1VTHGNDIEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a
168、 Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices32 of 48Bridge CircuitBridge circuit receives signals from HCMPPR&TCMPPC,and sends trimmed signal(VQ,PR)to PWMPRto effectively conduct reverse control.PR Total Comparator(TCMPPR)DelayOutRSQPR DriverNTGDEndStar
169、tPR PWM Ctrl.VTHVINNVTH3VTG,PRVG,PRVP,PRVCMP,PR CMPtP,PRtE,PRReverse ctrl.tech.RSQtE,PCVTHPR Hybrid:BridgeVTGVREGVREG,PC/2VTG,PRH/LHLVREG,PRH/L Mode SelectorPRVS,PRVCMP,PRVQ,PRQRSVG,PRSTR,PR01QbtP,PRVSSPR Driver tE,PRtP,PRM12VS,PRNTGDVTHVREG,PCBridge CircuittE,PCQRS QbVCMP,PRPWMPRVP,PRVREGVTG tE,PR
170、tE,PRdelayReverse control tech.HCMPPRTCMPPCVQ,PRIEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Po
171、wered Implantable Devices33 of 48Negative Threshold Gate Driver(1):Intro.Negative threshold gate driver(NTGD)enables VG,PRto be lower as VTH.Low RON(on-resistance)in PPRProhibits to entry in sub-threshold mode in PPRPR Total Comparator(TCMPPR)DelayOutRSQPR DriverNTGDEndStartPR PWM Ctrl.VTHVINNVTH3VT
172、G,PRVG,PRVP,PRVCMP,PR CMPtP,PRtE,PRReverse ctrl.tech.RSQtE,PCVTHPR Hybrid:BridgeVTGVREGVREG,PC/2VTG,PRH/LHLVREG,PRH/L Mode SelectorPRVS,PRVCMP,PRVQ,PRVINNVREG,PRPPRD1P18P21C3N21N20N19P19P20R1VG,PRVINVN18VIN,DVREG,PCVNEG DiodeconnetedPMOS Diodecurrent path holderVTHVG,PRGNDVTHVREG,PCTiming DiagramCas
173、e for peak rightVREG,PCVIN,DNegative Threshold Gate Driver(NTGD)VIN,DP23P22VNTGD,INN23N22IEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distribu
174、ted Multi-Phase Control for Wirelessly-Powered Implantable Devices34 of 48Negative Threshold Gate Driver(2):PrincipleNegative threshold gate driver)VG,PRrising timeVG,PR=VREG,PC w/P19)VG,PRfalling timeVG,PR=VTHCurrent flows D1&R1C3 copies VTHof D1(NTGD)operates with diode connected PMOS(D1),VTHholde
175、r(C3),diode current path(R1)C3 generates VTHat VG,PRVINNVREG,PRPPRD1P18P21C3N21N20N19P19P20R1VG,PRVINVN18VIN,DVREG,PCVNEG DiodeconnetedPMOS Diodecurrent path holderVTHVG,PRGNDVTHVREG,PCTiming DiagramCase for peak rightVG,PR Falling TimeVG,PR Rising TimeP18P21C3N20P19R1VINVVNEGVREG,PCVREG,PCD1VTHVTHc
176、opyVTHC3N21N18VTHVIN,D=GNDVIN,D=VREG,PCVREG,PCVIN,DNegative Threshold Gate Driver(NTGD)VIN,DP23P22VNTGD,INN23N22VG,PRVG,PRIEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outp
177、uts in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices35 of 48Outline Introduction to Wireless Power Transfer(WPT)Concept of Proposed SIMO R3 Circuit Implementation Measurement Results ConclusionIEEE Biomedical Circuits and Systems Conference2024 IEEE Int
178、ernational Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices36 of 48Chip Photograph,Coils,and Connector)SIMO R3IC 1.56mm2active silicon area)FP
179、CB Line12)Inductive spiral coils3RX:Flexible PCB(FPCB)Connects SIMO R3IC to Retinal IC250nm CMOS technologyNMOS Res-div1Res-div2Bias ReferenceP2P1P3P2P1P3Total CMP PRRes-div31350 mTotal CMP PRTotal CMP PLTotal CMP PLTotal CMP PCTotal CMP PC2200 mTest BlockpledCou-CrossActive Area:1.56mm2 ParameterTx
180、RxInductance#of TurnsInner Dia.Outer Dia.Line SpaceLine WidthFill Factor3.77H3.70H6104.5cm1.7cm6.1cm3.5cm800m500m800m500m0.150.351.7cm3.5cmRx coil3.70H6.1cm4.5cmTx coil3.77H14cmFront sideBack side14cm Line from SIMO R3 IC to Retinal ICIEEE Biomedical Circuits and Systems Conference2024 IEEE Internat
181、ional Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices37 of 48Measurement Set-upMeasurement setup for the retinal prosthesis test with SIMO R3
182、OscilloscopeFunction GeneratorDC SupplyTx CoilRx FPCB CoilSIMO R Test BoardSIMO R ICRetinal ICElectrodeModelAnalog Discovery 2Laptop14cm FPCB LineMeasurement Set-up for Retinal Prosthesis with SIMO RBeam-Projector333IEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State C
183、ircuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices38 of 48Measured Waveform of SIMO R3in a Half CycleThree power transistors(PPL&PPC&PPR)turn on in a half cy
184、cleVREG,PL&VREG,PRvary from 1.0V to 3.5VWide regulation rangePDLcf)PDL:power delivered to the loadMeasured Waveforms of SIMO R34.5V3.3V1.5V3.5V1.0VVREG,PLVREG,PRVREG,PC as 4.5V4s0.8VPPR onPPC onPPL onIEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conferen
185、ce27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices39 of 48Measured Waveform of Selectable Reg.ModesMeasurement of 1-regul,2-regul,and 3-regul.modesVINNVREG,PRVREG,PCVREG,PL1
186、23VREG,PC:Reg OVREG,PL:Reg XVREG,PR:Reg XVREG,PC:Reg OVREG,PL:Reg OVREG,PR:Reg XVREG,PC:Reg OVREG,PL:Reg OVREG,PR:Reg O4.5V4.5V4.5V3.3V3.3V2.5V2nd regulation starts3rd regulation starts20ms2.4VRegulation processSingle-/Dual-/Triple-outputregulation modes are selectableexchange-ableVREG,PCVREG,PLVREG
187、,PRIEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices40 of 48Measured PCE
188、s of SIMO R3 with 3 distinct VREGsPCEVREG,PL5001k1.5k2.0k2.5k90%89%85%86%87%88%91%VREG,PC:300,4.5VVREG,PC:500,4.5VVREG,PR:1k,3.3VVREG,PR:1k,3.3VLoad ofFixed VREG,PL:1.5V PCE 87.9%88.4%Voltage ofPCEVREG,PL1.0V1.2V1.8V2.5V91%90%86%87%88%89%92%1.5VFixed VREG,PL:1k PCE 88.1%Peak PCE:90.82%VREG,PC:300,4.
189、5VVREG,PC:500,4.5VVREG,PR:1k,3.3VVREG,PR:1k,3.3VPeak efficiency:90.82%84.6mW (VREG,PC:4.5V,VREG,PL:3.3V,VREG,PR:2.5V)Overall efficiencies 87.9%500 VREG,PL 2.5k(fixed at 1.5V)cf)PCE:power conversion efficiencyIEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits
190、Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices41 of 48DVS Stimulation Supported by SIMO R3DVS Stimulation w/and w/o SIMO RVREG,PCVREG,PRVREG,PLElectrode&TissuetV
191、DD,STIMVDigital FBtSingle SupplyPCONDVELECSIMOPower PCONDHigh PCONDPixel-AdaptiveHeat-EfficientSTIM.w/o SIMO R3R3kTXRXPCONDP33 Separate SuppliesWide Output Range High PDLSmall Output RippleNo.of Outputs:3 High EfficientSIMO R3SIMO R3+DVS Stim.Power-Efficient in Entire IMD VELECVDD,STIMVELECStimulati
192、on with one-supply suffers from high PCONDStimulation with three-supply has lower PCONDHeat issuePower efficientcf)DVS:voltagedynamicscalingStep shapesupply voltageIEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Reson
193、ant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices42 of 48Measured Waveform of DVS Stim.w/SIMO R3Energy savingDynamic voltage scaling(DVS)stimulation with three-outputsIf retinal IC is exposed to light for 1-m
194、inute:70.4mJ energy is saved=(4.5V3.3V)100A 447s 505ch (60s/0.03s)Measured Waveforms of DVS Stim.w/SIMO RMagnified waveformVREG,PCVREG,PLVREG,PR2ms0.8VVDD,STIMGNDEnergy savedJ 200s0.8VGND3VDD,STIMVELEC1-pixel of retinal IC with 505 ch.IEEE Biomedical Circuits and Systems Conference2024 IEEE Internat
195、ional Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulating Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices43 of 48Measured Waveform of Full Retinal ProsthesisInput Image:AOutput Image:Image Proj
196、ection ResultsRetinal ICSIMO R IC3505-ChannelRetinal Prosthesis Wireless Power14 cm lineSkinTx coilImage recovers to a recognizable image with SIMO R3ICIEEE Biomedical Circuits and Systems Conference2024 IEEE International Solid-State Circuits Conference27.3:A 90.8%-Efficiency SIMO Resonant Regulati
197、ng Rectifier Generating 3 Outputs in a Half Cycle with Distributed Multi-Phase Control for Wirelessly-Powered Implantable Devices44 of 48Process Tech.mResonant Freq.This Work0.18125 kHz0.1813.56 MHz0.25 2 MHzPeak PDL 114mW81mW135.53mWVLSI 2022 2 ISSCC 2020 3 ISSCC 2023 4 CICC 2023 5PublicationTCAS-2
198、019 10.06540.68 MHz60.5mW0.186.78 MHz300mWXXOXXProtection Tech.Back Current Tx,Rx Coils(for all outputs)24.0H,24.0HN/A,N/A3.77H,3.70HN/A,N/A1.89H,1.87HSSDO:Single-stage dual output,PWFM:Pulse width/frequency Modulation,CWM:Current wave modulation,SR-RR:structure-reconfigurable regulating rectifier,P
199、FM:Pulse frequency modulation,DOVD:dual-output voltage doubler.Overall SchemeDual-Output RSIMO R330.182 MHz&5 MHz65mWXCapacitive:N/A#Regul.Outputs223222Range of VOUT1,Range of VOUT2,Range of VOUT33.0V,1.5V 3.0V,N/A2.5VN/A0.4VN/AN/AVOUT,MAX VOUT,MIN1.5VVOUT1 VOUT2MAX3.5V1.8V0.4V1.1V1.3V1.5VApplicable
200、 toActive Chip Area0.63mm 3.68mm1.56mm0.74mm 2.31mmDetailed SchemeSSDODOVD31 11 1#of Outputs2(VDC/VAC)+Only 1 power switch conducting reduced PCOND lossConv.VM FBRHybrid VM/CM RXVACVDCVACVDCCRXLRXCRXLRX27.4 A 13.56MHz Wireless Power Transfer System with Hybrid Voltage-/Current-Mode Receiver and Glob
201、al Digital-PWM RegulationAchieving 150%Transfer Range Extension and 72.3%End-to-End Efficiency 2024 IEEE International Solid-State Circuits Conference7 of 26Hybrid VM/CM RX OperationVoltage Mode(VM)Current Mode(CM)Freewheeling(0X)Wider Transfer RangeStrong Coupling:VMWeak Coupling:VM(low input power
202、)Resonant CM0XVCRBuild-UpCharging27.4 A 13.56MHz Wireless Power Transfer System with Hybrid Voltage-/Current-Mode Receiver and Global Digital-PWM RegulationAchieving 150%Transfer Range Extension and 72.3%End-to-End Efficiency 2024 IEEE International Solid-State Circuits Conference8 of 263-Mode Digit
203、al-PWM TX(2)+4X maximum output power enhanced weak-coupling ability+PWM control w/fully-on/off PA no power leaking in idlingConv.Half-Bridge TX w/Pulse Skip.Proposed 3-Mode Full-Bridge TX w/DPWMCTXLTXVTXVTX1X Mode1/3X ModeLTXCTXVTX1VTX2MP1MP2MN1MN2VTX121X Mode2X Mode0X ModeTOFFTPWMTON27.4 A 13.56MHz
204、 Wireless Power Transfer System with Hybrid Voltage-/Current-Mode Receiver and Global Digital-PWM RegulationAchieving 150%Transfer Range Extension and 72.3%End-to-End Efficiency 2024 IEEE International Solid-State Circuits Conference9 of 263-Mode TX Operation2X Mode1X Mode0X Mode2X/0X:Heavy loads1X/
205、0X:Light loadsLTXCTXVTX1VTX2MP1MP2MN1MN2VTX121X Mode2X Mode0X ModeTOFFTPWMTON27.4 A 13.56MHz Wireless Power Transfer System with Hybrid Voltage-/Current-Mode Receiver and Global Digital-PWM RegulationAchieving 150%Transfer Range Extension and 72.3%End-to-End Efficiency 2024 IEEE International Solid-
206、State Circuits Conference10 of 26Digital-PWM Regulation+LUT-driven digital control fast transient recoveryLTXCTXVTX1VTX2MP1MP2MN1MN2VTX121X Mode2X Mode0X ModeTOFFTPWMTONLight Heavy Load-TransientOne-step RecoveryOutput Voltage RXTOFFTOFFTOFF164 6464PWM SignalsDPWMOutput Voltage RXHeavy Light Load-Tr
207、ansientDPWMTON TONTON1DPWM Controller27.4 A 13.56MHz Wireless Power Transfer System with Hybrid Voltage-/Current-Mode Receiver and Global Digital-PWM RegulationAchieving 150%Transfer Range Extension and 72.3%End-to-End Efficiency 2024 IEEE International Solid-State Circuits Conference11 of 26V-Sense
208、 LSK Demodulation(3)Wireless Power LinkCTXLTXLRXkTX-RXSkin/AirCRXLSKIRXITXVCTXLSKONITXVCTXConv.ITXSensingJ.Tang,ISSCC21Proposed Peak VCTXSensingITXSenseISENSEI-to-VConverterLSK Dem.CMPV Div.VCTXLSK Dem.CMPStrongARMCLKTXCLKTXVCTX+Simpler block+Low consumption+High bandwidthCTX27.4 A 13.56MHz Wireless
209、 Power Transfer System with Hybrid Voltage-/Current-Mode Receiver and Global Digital-PWM RegulationAchieving 150%Transfer Range Extension and 72.3%End-to-End Efficiency 2024 IEEE International Solid-State Circuits Conference12 of 26System DiagramLRXCRXMPMNCL1CL2VMCMVACVLVDDTXMP1MP2MN1MN2CTXGate Driv
210、ing w/Deadtime Gen.VTX1VTX2SLCSLSKHybrid VM/CM RX Chip3-Mode TX ChipLTXVMVGPVGNVCTX27.4 A 13.56MHz Wireless Power Transfer System with Hybrid Voltage-/Current-Mode Receiver and Global Digital-PWM RegulationAchieving 150%Transfer Range Extension and 72.3%End-to-End Efficiency 2024 IEEE International
211、Solid-State Circuits Conference13 of 26System DiagramLRXCRXSLCSLSKMPMNCL1CL2VMCMVACVLVDDTXMP1MP2MN1MN2LTXCTXGate Driving w/Deadtime Gen.VTX1VTX2VREFHVLVREFLVACVMVMVRV2CVMODEDETOutput RegulationMode TransitionCMSwitch ControlVMSwitch ControlVREGVMODEVGPVGNVGNVGPVMODEVREGVACVLVMODEVACVLVMVREGVMODEVGPV
212、MVGNVMVGPCMVGNCMVSLCPVSLCNHybrid VM/CM RX Chip3-Mode TX ChipCLKDigital PWM ControllerUplinkLSKDemodulatorClocks GeneratorFine PWM LoopLUT-driven Coarse PWM LoopVCTXVTX2CLKVLSKVDUTYVMODETXVMODETXVDUTY13.56MHzVCTX27.4 A 13.56MHz Wireless Power Transfer System with Hybrid Voltage-/Current-Mode Receiver
213、 and Global Digital-PWM RegulationAchieving 150%Transfer Range Extension and 72.3%End-to-End Efficiency 2024 IEEE International Solid-State Circuits Conference14 of 26Chip Micrograph 0.18m CMOS ProcessAll 1.8V core devices TX chip:1.53mm2 RX chip:1.65mm2Decoupling Capacitors(optional)Power StageCont
214、rol CircuitryOutput Capacitors(optional)Control CircuitryPower Stage1960m780m1960m840mTX ChipRX Chip27.4 A 13.56MHz Wireless Power Transfer System with Hybrid Voltage-/Current-Mode Receiver and Global Digital-PWM RegulationAchieving 150%Transfer Range Extension and 72.3%End-to-End Efficiency 2024 IE
215、EE International Solid-State Circuits Conference15 of 26Measurement SetupTX CoilRX CoilD=30mmD=20mmTX PCBRX PCBInductive LinkLink InformationLTX1.39HLRX295nHQLTX155.2QLRX108.3CTX100pFCRX470pF27.4 A 13.56MHz Wireless Power Transfer System with Hybrid Voltage-/Current-Mode Receiver and Global Digital-
216、PWM RegulationAchieving 150%Transfer Range Extension and 72.3%End-to-End Efficiency 2024 IEEE International Solid-State Circuits Conference16 of 26Steady-State Operation Dcoil=1.25cm Strong coupling caseRX works in VM/0X OperationVLis charged to upper limitRX generates LSK(VREG)TX detects LSK(V-Sens
217、e)TX is OFF for certain TOFFVREGVLVTX12VDUTY1.8V 30mA Load5s/div27.4 A 13.56MHz Wireless Power Transfer System with Hybrid Voltage-/Current-Mode Receiver and Global Digital-PWM RegulationAchieving 150%Transfer Range Extension and 72.3%End-to-End Efficiency 2024 IEEE International Solid-State Circuit
218、s Conference17 of 26Steady-State Operation Dcoil=1.25cm Strong coupling caseRX works in VM/0XVREGVLVTX12VDUTYVLVMGNDVAC50ns/div500mV/divFull-Wave Rectification w/Adaptive ZVS5s/divRX in VM waveform27.4 A 13.56MHz Wireless Power Transfer System with Hybrid Voltage-/Current-Mode Receiver and Global Di
219、gital-PWM RegulationAchieving 150%Transfer Range Extension and 72.3%End-to-End Efficiency 2024 IEEE International Solid-State Circuits Conference18 of 26Steady-State Operation Dcoil=5.5cm Weak coupling caseRX works in VM/CM OperationVLfalls below lower limitVM CM if weak inputCM recovers VLRX backs
220、to normal VMVMODEDETVLVMODEVTX121.61.8V HysteresisCMVMVMCMVMCM Det.CMVM100s/div27.4 A 13.56MHz Wireless Power Transfer System with Hybrid Voltage-/Current-Mode Receiver and Global Digital-PWM RegulationAchieving 150%Transfer Range Extension and 72.3%End-to-End Efficiency 2024 IEEE International Soli
221、d-State Circuits Conference19 of 26Steady-State Operation Dcoil=5.5cm Weak coupling caseRX works in VM/CMVMODEDETVLVMODEVTX121.61.8V HysteresisCMVMVMCM100s/divVLVMGNDVAC50ns/div500mV/divBuild-UpChargingRX in CM waveform27.4 A 13.56MHz Wireless Power Transfer System with Hybrid Voltage-/Current-Mode
222、Receiver and Global Digital-PWM RegulationAchieving 150%Transfer Range Extension and 72.3%End-to-End Efficiency 2024 IEEE International Solid-State Circuits Conference20 of 26Load-Transient Response System resettles in a few TPWM 110mV undershoot&unnoticeable overshootVDUTYVLVTX12IL0.11mA18mA(164x)0
223、.11mA1.8V27.4 A 13.56MHz Wireless Power Transfer System with Hybrid Voltage-/Current-Mode Receiver and Global Digital-PWM RegulationAchieving 150%Transfer Range Extension and 72.3%End-to-End Efficiency 2024 IEEE International Solid-State Circuits Conference21 of 26Transfer Extension Results Transfer
224、 range is extended by up-to-1.5 Max.transfer distance is achieved at 7cm123456780.00.61.21.8VL(V)Coil Distance w/Air Gap,Dcoil(cm)Rx in VM IL=0.18mA Rx in CM IL=0.18mA Rx in VM IL=1.8mA Rx in CM IL=1.8mA12345670.00.61.21.8VL(V)Coil Distance w/Air Gap,Dcoil(cm)Rx in VM IL=0.18mA Rx in CM IL=0.18mA Rx
225、 in VM IL=1.8mA Rx in CM IL=1.8mA1X/0X TX(half-bridge topology)2X/0X TX(full-bridge topology)1.2X 1.5X IL=0.18mA1.3X1.4X IL=0.18mA27.4 A 13.56MHz Wireless Power Transfer System with Hybrid Voltage-/Current-Mode Receiver and Global Digital-PWM RegulationAchieving 150%Transfer Range Extension and 72.3
226、%End-to-End Efficiency 2024 IEEE International Solid-State Circuits Conference22 of 26Power Efficiencies E2E efficiency peaks at 72.3%Up-to-33.5%enhancement is achieved by global regulation010203020406080100Efficiency(%)Load Current,IL(mA)Rx EfficiencyReceiver Efficiency VL=1.8V,Dcoil=0.5cm90.1%1X/0
227、X TX2X/0X TX01020304050020406080E2E Efficiency(%)Load Current,IL(mA)Proposed System Rx Reg.only 1X Tx Rx Reg.only 2X TxE2E Efficiency VL=1.8V,Dcoil=0.5cm1X/0X TX2X/0X TX72.3%71.4%33.5%29.4%27.4 A 13.56MHz Wireless Power Transfer System with Hybrid Voltage-/Current-Mode Receiver and Global Digital-PW
228、M RegulationAchieving 150%Transfer Range Extension and 72.3%End-to-End Efficiency 2024 IEEE International Solid-State Circuits Conference23 of 26BenchmarkingThis WorkISSCC 21 5ISSCC 21 6ISSCC 15 4ISSCC22 7JSSC 21 3JSSC 18 8Technology180nm CMOS180nm CMOS180nm BCD350nm CMOS180nm CMOS250nm CMOS65nm CMO
229、SWPT ArchitectureSeries-ParallelSeries-ParallelSeries-ParallelSeries-ParallelCapacitiveSeries-SeriesSeries-ParallelTX Topology3-Mode Class-DClass-DClass-DBuck+Class-DClass-DDiff.Class-DClass-DRX TopologyHybrid VM/CMVM(FBR)VM(FBR)VM(1X/2X FBR)VM(FBR)VM(FBR)VM(FBR)Frequency(MHz)13.566.786.5/7.513.569/
230、10/146.7813.56Coil Diameter(cm)TX 3;RX 2TX 3.2;RX 2.5TX 3;RX 3TX 5;RX 1N/ATX 4.5;RX 4.5TX 3.5;RX 2Output Regulation SiteTX&RXTX&RXNo RegulationTX&RXTX&RXTX&RXTX&RXGlobal Reg.Link(Fully integrated)Wireless LSK(Yes)Wireless LSK(Yes)N/AWireless LSK(No)Wireless LSK(Yes)Wireless LSK(No)Wireless LSK(No)LS
231、K Demodulation(Implementation)VCTXSensing(Comparator)ITXSensing(I Sensor)N/AITXSensing(3rdcoil)ITXSensing(I Sensor)ITXSensing(3rdcoil)ITXSensing(3rdcoil)27.4 A 13.56MHz Wireless Power Transfer System with Hybrid Voltage-/Current-Mode Receiver and Global Digital-PWM RegulationAchieving 150%Transfer R
232、ange Extension and 72.3%End-to-End Efficiency 2024 IEEE International Solid-State Circuits Conference24 of 26BenchmarkingThis WorkISSCC 21 5ISSCC 21 6ISSCC 15 4ISSCC22 7JSSC 21 3JSSC 18 8VIN TX/VOUT RX(V)1.8/1.81.8/(1.2-1.8)(N/A)/(3.5-4.5)(N/A)/3.73.3/1.85/52.5/(1.2-2.5)Max.Load Power PL(mW)(Dcoil)8
233、0.5(0.5cm)32(0.65cm)115(0.5cm)234(0.3cm)414400(0.3cm)49.4(0.6cm)VLRipple(mV)(IL)25(1.8mA);100(30mA)75(Hyst.Ctrl)N/AN/A100(Hyst.Ctrl)200(50mA)100(10mA)Load Tran.Recovery(s)(Step Ratio)10(1:164)0(1:3)(Hyst.Ctrl)N/A2000(1:10)0(1:3)(Hyst.Ctrl)820(1:3)0(1:10)(Constant TOFF)Under/Overshoot(mV)(Step Ratio)
234、110/Unnoticeable(1:164)Unnoticeable(1:3)(Hyst.Ctrl)N/A162/110(1:10)Unnoticeable(1:3)(Hyst.Ctrl)300/Unnoticeable(1:3)Unnoticeable(1:10)(Constant TOFF)WPT Range Extension(by RX reconfiguration)150%1X/0X TX;140%2X/0X TXNoNoNoNoNoNoMax.Transfer Distance Dcoil(cm)(IL)7(0.18mA);5.2(1.8mA);0.85(5mA)0.5(25m
235、A)1.8(13.5mA)N/A0.3(50mA)1.15(4mA)Peak E2E Efficiency(Dcoil)72.3%1X/0X TX;71.4%2X/0X TX(0.5cm)61.9(0.65cm)56.7(0.5cm)62.4(0.3cm)68.371.5(0.3cm)70.6(0.6cm)27.4 A 13.56MHz Wireless Power Transfer System with Hybrid Voltage-/Current-Mode Receiver and Global Digital-PWM RegulationAchieving 150%Transfer
236、Range Extension and 72.3%End-to-End Efficiency 2024 IEEE International Solid-State Circuits Conference25 of 26Conclusion A 13.56MHz WPT system w/150%transfer range extension72.3%end-to-end efficiencyFast load-transient recovery Enabled byHybrid voltage-/current-mode receiver3-mode DPWM-controlled tr
237、ansmitterFully integrated V-sense LSK demodulation27.4 A 13.56MHz Wireless Power Transfer System with Hybrid Voltage-/Current-Mode Receiver and Global Digital-PWM RegulationAchieving 150%Transfer Range Extension and 72.3%End-to-End Efficiency 2024 IEEE International Solid-State Circuits Conference26
238、 of 26Thank you for your attention!27.4 A 13.56MHz Wireless Power Transfer System with Hybrid Voltage-/Current-Mode Receiver and Global Digital-PWM RegulationAchieving 150%Transfer Range Extension and 72.3%End-to-End Efficiency 2024 IEEE International Solid-State Circuits Conference27 of 26Please Sc
239、an to Rate This Paper27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference1 of 37A Wir
240、eless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power ControlYutang Chen,Yuxuan Luo,Yifan Lin,Lei Shao,Dihu Chen and Jianping Guo*Sun Yat-sen University,Guangzh
241、ou,ChinaEmails:*27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference2 of 37Outline Mo
242、tivation and Challenges Proposed WPT SystemOverall System ImplementationRX Local Voltage RegulationTX Phase-Shift/Time-Constant DetectionTX Hybrid Transmission Power Control Measurement Result Conclusions27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coef
243、ficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference3 of 37kVINCINTransmitter(TX)Receiver(RX)Wireless LinkInverterDC-ACAC-ACCTXLTXCRXLRXCOR3RectifierAC-DCVOBackground and Motivation
244、High spatial freedom for portable/wearable devicesTX(DC-AC)+wireless link(AC-AC)+RX(AC-DC)Typical range of coupling coefficient(k):0.1-0.4Typical resonant WPT(R-WPT)system27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39
245、Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference4 of 37Background and Motivation Two important impedancesInput impedance of rectifier ZRX(also as loading in RX resonant tank)Reflected equivalent impedance of RX
246、 ZREFL(related to ZRX)VINCINCTXLTXInverterZREFLkVINCINCOInverterR3RectifierVOCTXLTXCRXLRXZRX27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Cont
247、rol 2024 IEEE International Solid-State Circuits Conference5 of 37COR3RectifierVOCRXLRXVIN1VIN2Feedback(EA/CMP)ILZRXVRMBackground and Motivation Reconfigurable resonant-regulated(R3)rectifierSingle power stage for rectification and regulationMode configuration such as 0X/1X controlled by signal VRM1
248、X Mode:ChargingLarge ZRX(10)R3-Rectifier ArchitectureVOVIN1VIN2VOVIN1VIN20X Mode:FreewheelingSmall ZRX(0.1)27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmis
249、sion Power Control 2024 IEEE International Solid-State Circuits Conference6 of 37VO1X Mode0X ModeVIN1VIN2VRMCOR3RectifierVOCRXLRXVIN1VIN2Feedback(EA/CMP)ILZRXVRMBackground and Motivation Efficiency Improvement is important!Firstly,detect the RX mode Secondly,reduce TX power when RX is under 0X modeV
250、IN1/2equals to 0 and ILis only supported by COin 0X mode,thus the transmission power wastes.Operation principle of RXR3-Rectifier Architecture27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Con
251、stant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference7 of 37Prior Art Hysteretic TX power control J.Tang,ISSCC,2021 Amplitude detection includes iTXcurrent sensor and CMP Pulse-skipping control reduces transmission powerSeries-Parallel Tank27.5
252、:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference8 of 371X ModeCharging CO0X ModeDisch
253、arging COVRMiTX(k=0.1)iTX(k=0.39)Conceptual Waveform of iTX(current of TX resonant tank)in Series-parallel tankZREFL=2k2LTXZRXLRXiTX4VTXZREFL In 0X mode:ZRX-ZREFL-iTX Detect the change of iTXand obtain the RX-mode information Reduce the transmission power in 0X modePrior Art27.5:A Wireless Power Tra
254、nsfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference9 of 37Challenges Limitation in amplitude detection k infl
255、uences the amplitude of iTX Require an adaptive VTHfor correct detectionZREFL=2k2LTXZRXLRXiTX4VTXZREFL1X ModeCharging CO0X ModeDischarging COVRMiTX(k=0.1)iTX(k=0.39)VTH1VTH227.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.3
256、9 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference10 of 37VTH1VTH21X ModeCharging CO0X ModeDischarging COVRMiTX(k=0.1)iTX(k=0.39)Challenges SR-PA TX power control F.-B.Yang,JSSC,2021 Adaptive VTHis also needed
257、in series-series tank Single TX power control is NOT effective enoughStructure-Reconfigurable PA(SR-PA)Power ControlAmplitude DetectionZREFL=2k2LTXLRXZRXiTX4VTXZREFL27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based
258、on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference11 of 37Challenges Phase-shift detection X.Bai,JSSC,2023 VTHshould be set in the range of tTX Adaptive VTHis still necessary since k affects Q1and range of tTXZREFL=2k2
259、LTXLRXZRXQ1=1ZREFLLTXCTXVTH1VTH2tRX:delay time between VACand IACtTX:delay time between VPand IP27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power
260、Control 2024 IEEE International Solid-State Circuits Conference12 of 37Challenges k sensor for an adaptive VTH?H.Qiu,JSSC,2022 CANNOT handle the changed ZRXin R3rectifier Information processing externallyk=(rRX+RL)(RfVOUTVINr)LLRX=R|VOUT|Rf|VIN|Operate under a fixed ZRX=rRX+RL27.5:A Wireless Power T
261、ransfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference13 of 37 Available detection under wide-range k Effectiv
262、e transmission power control for high end-to-end(E2E)efficiencyTargets of This Work27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024
263、IEEE International Solid-State Circuits Conference14 of 37Outline Motivation and Challenges Proposed WPT SystemOverall System ImplementationRX Local Voltage RegulationTX Phase-Shift/Time-Constant DetectionTX Hybrid Transmission Power Control Measurement Result Conclusions27.5:A Wireless Power Transf
264、er System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference15 of 37Overall System Implementation RX local voltage regula
265、tion TX global power controlPhase-shift/time-constant detection(available under wide-range k)Hybrid transmission power control for efficiency improvementTransmitter(TX)Receiver(RX)VTXVREFCOILVORX CHIP VFBCurrentSensorZero-CurrentDetectorVRMVSTControlCircuitVRXLocal Voltage RegulationR3 Rectifier w/O
266、n/off-Delay CompensationGlobal Transmission Power ControlkCommunication&Power LinkCTXLTXITXCRXLRXIRXTX CHIPCMPCurrent SensorVSSADetection Core6.78-MHz CLK101/15 Density CLK13.56-MHzVCOVDVTMVGATEVN3TVSENBlank Gen.VTX2Reconfigurable Power AmplifierVSSAVSSPVDDAVDDPNon-OverlapGenerator27.5:A Wireless Po
267、wer Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference16 of 37MUXRX CHIPMUXMUXMUXVOVOVOVOVOVFBVRMVSTUPVRE
268、FVFBZero-Current DetectorVIN1VIN2VP1RVN1RVN2RVP2RCurrentSensorVTH Gen.ZCD SignalGen.VSENCMPVTHVOFFENIOVOVRMIOVIN1VIN21X Mode0X ModeRX Local Voltage RegulationDynamic on/off-delay compensation:reduces reverse current and diode conduction CMP-based control for R3rectifier1X charging mode&0X dischargin
269、g mode27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference17 of 37Light k(e.g.,k=0.1)
270、Heavy k(e.g.,k=0.39)VRMVTXiTX1X0XIncrease from 0=0 0VRMVTXiTX1X0XIncrease from 0=0 0Underdamped OscillationTX Phase-Shift(PS)Detectiond=01 2(:damping ratio)0=1LTXCTXkVTXCOR3RectifierVOCTXLTXCRXLRXZRXILVTXCTXLTXZREFL In 1X-to-0X mode conversionSince ZRXdecreases,underdamped oscillation occurs under d
271、ifferent kOscillation frequency dis different from resonant frequency 0 of VTXThus,phase difference increases from 027.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid
272、 Transmission Power Control 2024 IEEE International Solid-State Circuits Conference18 of 37VRMLight k(e.g.,k=0.1)VRMVTXiTX increases from 036s 38.5s 02.5A0X1XHeavy k(e.g.,k=0.39)VTXiTX increases from 052s 54.5s 01.0A0X1XTX Phase-Shift(PS)Detection In 1X-to-0X mode conversionSimulation results shows
273、that increases from 0 under k of 0.1 and 0.39,respectively27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-
274、State Circuits Conference19 of 37VRMVTXiTX0X1XSmall (4 Cycles)Large(6 Cycles)The phase of iTX is the same in the 1st cycle.Light k(e.g.,k=0.1)Heavy k(e.g.,k=0.39)VRMVTXiTX0X1XSmall (2 Cycles)Large(4 Cycles)The time constant becomes larger due to a smaller ZREFL.TX Time-Constant(TC)DetectionkVTXCOR3R
275、ectifierVOCTXLTXCRXLRXZRXILVTXCTXLTXZREFL =LTXZREFL In 0X-to-1X mode conversionZRX-ZREFL-,discharging time of iTXincreases relativelyUse differential sampling to overcome the limitation of kPS detection is unavailable since iTXis the same when VTX=“1”ZREFL=2k2LTXLRXZRX27.5:A Wireless Power Transfer
276、System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference20 of 37TX Time-Constant(TC)Detection In 0X-to-1X mode conversio
277、nSimulation results under k of 0.1 and 0.39,and increases relativelySelect available waveforms in iTXLight k(e.g.,k=0.1)VRMVTXiTX454s 57.5s 00.5A50X1XHeavy k(e.g.,k=0.39)VRMVTXiTX2154.5s 158s 00.5A30X1X27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coeffi
278、cient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference21 of 37TX CHIP13.56-MHzVCOVTX2VN3TVSENCMPVSSAVDDAVD10VTMNon-OverlapGen.Phase Shift DetectionTime Constant DetectionVP1VP2VN1VN2VGA
279、TE0.5-Duty,6.78-MHz CLK1/15 Low-Density CLKDet.CoreVN1TVSSAVSSPVDDAVDDPMN1MN3MN4VTX1Logic&DriverVBLKBlank GeneratorVP1/2/3/4TVCLKLVCLKVSSPVOFFSETDuty decreases due to phase shift.Num.of pulse increases with .VOVRMiTXVD1XVD0X0X1X1X0XTX PS/TC Detection Compare VSENand VOFFSET(closed to ground)to gener
280、ate VD Extract VD1Xand VD0Xfor PS and TC detections,respectivelyFrom VD27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE Interna
281、tional Solid-State Circuits Conference22 of 37VOVRMiTXVD1XVD0X0X1X1X0XTX PS Detection In 0X mode,only part of iTXis sensed due to phase different Thus,duty of VD1Xreduces from 0.5 under different k VRMiTXVTX2VSENVD1XTX CHIP13.56-MHzVCOVTX2VN3TVSENCMPVSSAVDDAVD10VTMNon-OverlapGen.Phase Shift Detectio
282、nTime Constant DetectionVP1VP2VN1VN2VGATE0.5-Duty,6.78-MHz CLK1/15 Low-Density CLKDet.CoreVN1TVSSAVSSPVDDAVDDPMN1MN3MN4VTX1Logic&DriverVBLKBlank GeneratorVP1/2/3/4TVCLKLVCLKVSSPVOFFSETDuty decreases due to phase different27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement un
283、der Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference23 of 37Duty decreases due to phase shift.Num.of pulse increases with .VOVRMiTXVD1XVH1XVL1XVD0XVH0XVL0XVDAC0X1X1
284、XLoadTransientLight-LoadHeavy-LoadTime-Constant Detection0XVTMPhase-Shift Detection TX PS Detection Circuit implementationDuty-voltage converter(DVC):duty of VD1Xconverts to VL1XVH1X(constant VTH)corresponds to an about 0.45 duty ratioOnce VL1X VL0X,VTMis set to“1”following VRMVL0Xis sampled at 2ndV
285、DACand held as VTHVH0Xis updated at each VDAC27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuit
286、s Conference26 of 37TX CHIP13.56-MHzVCOVTX2VN4TVP4TVN3TVP3TVSENCMPVSSAVDDPVDDAVD10VTMNon-OverlapGen.Phase Shift DetectionTime Constant DetectionVP1VP2VN1VN2VGATE0.5-Duty,6.78-MHz CLK1/15 Low-Density CLKDet.CoreVP2TVP1TVN1TVN2TVSSPVSSAVSSPVDDAVDDPMN1/2MN3MN4MP1/2MP4MP3VTX1Logic&DriverVBLKBlank Genera
287、torVP1/2/3/4TVCLKLVCLKDuty decreases due to phase shift.Num.of pulse increases with .VOVRMiTXVD1XVH1XVL1XVD0XVH0XVL0XVDAC0X1X1XLoadTransientLight-LoadHeavy-LoadTime-Constant Detection0XLow-Power ModeVTMVTX2Full-Power Mode1/15 Low Density Full DensityFull Density 1/15 Low DensityPhase-Shift Detection
288、 TX Hybrid Transmission Power Control Reduce TX power significantly when VTM=“0”Adopt 1/15-density VGATEand disable large-size MP1/2&MN1/2VCLKD0D1D2D3D1DFFDQNQRSTDFFDQNQRSTDFFDQNQRSTDFFDQNQRSTD0D2D3VCLKVCLKLD0D1D2D30.5-Duty,6.78-MHz CLK1/15 Low-Density CLK(VCLKL)VP1/2TVTMVP1/2MP1/2Driver of Large-Si
289、ze MP1/2Driver of Large-Size MN1/2VN1/2TVTMVN1/2MN1/227.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State
290、 Circuits Conference27 of 37Outline Motivation and Challenges Proposed WPT SystemOverall System ImplementationRX Local Voltage RegulationTX Phase-Shift/Time-Constant DetectionTX Hybrid Transmission Power Control Measurement Result Conclusions27.5:A Wireless Power Transfer System with Up-to-27.9%Effi
291、ciency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference28 of 37RX ChipTX ChipdcoilChips Micrograph and Measurement Setup 0.18-m CMOS process1 mm2
292、mm1.45 mmNMOSMN1NMOSMN2PMOSMP1PMOSMP2MP3MP4MN3MN4Bandgap&BiasVCO&CLKBlankDecapDecapDecapNon-OverlapGen.Detection CoreCurrent SensorLogic for Core1/15 Low-Density CLKESDESDESDOutput BufferNMOSNMOSPMOSPMOSLow-Side CMPLow-Side CMPHigh-Side CMPHigh-Side CMPControlCircuitCurrent SensorVTHGeneratorZCD CMP
293、ZCD Gen.Output BufferOutput BufferESDESDTX ChipRX Chip27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-Stat
294、e Circuits Conference29 of 37TX CoilRX Coil3.6cm5.1cm1.9cm3.3cmParameters of Coils 1100-nH LTX&525-nH LRXwith 300-m RPAR each 2 to 20-mm dcoilcorresponds to k of 0.39-0.1Measured k versus dcoil 024681012141618200.050.100.150.200.250.300.350.40Coupling Coefficient kCoil Distance dcoil(mm)Measurement
295、Simulation27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference30 of 37Measured Startu
296、p Waveforms IL=50mA Smooth self-startup Voltage regulation of 5 V at RXPassive Rect.Active Rect.2 ms VO(2 V/div)VRM(2 V/div)500 s VIN1(2 V/div)VIN2(2 V/div)Passive RectifierActive Rect.dcoil=2 mmdcoil=20 mmVO=5 V27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupl
297、ing Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference31 of 37Measured Steady-state Waveforms PS/TC detection:VTMfollows VRM well Transmission power reduces in LP mode(VTM=“0”
298、)VO(0.1 V/div)VRM(5 V/div)VTM(5 V/div)VTX2(2 V/div)2 s 50 s Hysteresis Window=120 mV2.7 s 0.8 s 2 s Full-Power ModeFull-Power ModeLow-Power ModeIL=190 mA,dcoil=2 mm27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based o
299、n Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference32 of 37VO(0.1 V/div)VRM(5 V/div)VTM(5 V/div)VTX2(2 V/div)2 s 10 s Hysteresis Window=120 mV1.6 s 2.4 s 2 s Full-Power ModeL.-Power ModeFull-Power ModeMeasured Steady-sta
300、te Waveforms Detect correctly under 2/20-mm dcoil(0.39/0.1 k)IL=190 mA,dcoil=20 mm27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 I
301、EEE International Solid-State Circuits Conference33 of 37Measured Load Transient Response PS/TC detection and hybrid power control perform well Instant recovery time,VO=10 mV IL=5 100 mA,dcoil=2 mmVO(0.1 V/div)VC(5 V/div)VTM(5 V/div)VTX2(2 V/div)VO=10 mVVO ripple=120 mVIL=100 mA IL=5 mA IL=5 mA 200
302、ns L:Low-Power Mode200 ns 20 s 20 s FLFor Load Transient ResponseF:Full-Power Mode 200s 27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control
303、2024 IEEE International Solid-State Circuits Conference34 of 37Measured E2E Efficiency 74.3%peak E2E efficiency&27.9%peak effi.improvement101001000010203040506070809027.9%23.5%74.3%E2E Efficiency E2E(%)Output Power PO(mW)w/Transmission Power Ctrl.2 mm/10 mm/20 mmw/o Transmission Power Ctrl.2 mm/10 m
304、m/20 mm21.8%27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference35 of 37Performance S
305、ummary and Comparisons2 JSSC 20183 JSSC 20214 ISSCC 20215 TPEL 20236 JSSC 2023This workTechnology65 nm CMOS0.25 m CMOS0.18 m CMOS0.18 m CMOS0.18 m CMOS0.18 m CMOSSystem LevelTX&RX(Silicon)TX&RX(Silicon)TX&RX(Silicon)TX(Silicon)RX(Board)TX&RX(Silicon)TX&RX(Silicon)LC tankSPSSSPSSSSSSFreq.(MHz)13.566.
306、7813.566.786.786.78Type of LSKAmplitudeAmplitudeAmplitudeAmplitudePhase ShiftPhase Shift&Time ConstantOff-Chip ComponentsExtra Sensing CoilOscillator;Extra CoilNoneSingle ResistorNoneNoneVO(V)1.2-2.551.2-1.853.35Max.PO(mW)49.4400321000900950Trans.VODroopUnnoticeable6%UnnoticeableUnnoticeable11.5%Unn
307、oticeableRecovery TimeInstant820 sInstantInstant70 sInstantLoad Reg.(mV/mA)0.90.590.270.27N/A0.11Peak Efficiency(%)70.671.561.960.67774.3Maximum E2E Effi.Improve.(%)17.511.33716.114.227.9Range of Coupling Coefficient0.15-0.25N/A0.1-0.25N/AN/A0.1-0.39Range of dcoil(mm)6-833.5-11.53-410-202-20Load Ran
308、ge with Effi.Improv.10%5-22 mW(6 mm)20-50 mW(3 mm)2.4-24 mW(6.5 mm)25-130 mW(4 mm)50-200 mW(15 mm)25-250 mW(2 mm)5-950 mW(20 mm)27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detectio
309、n and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference36 of 37Conclusions A Complete WPT System is ProposedWide operating range of k:phase-shift/time-constant detection74.3%peak efficiency and 27.9%peak efficiency improvement:hybrid transmission power control
310、 Fast transient response:CMP-based(RX local voltage regulation+TX global power control)27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2
311、024 IEEE International Solid-State Circuits Conference37 of 37Thank you!27.5:A Wireless Power Transfer System with Up-to-27.9%Efficiency Improvement under Coupling Coefficient Ranging from 0.1 to 0.39 Based on Phase-Shift/Time-Constant Detection and Hybrid Transmission Power Control 2024 IEEE International Solid-State Circuits Conference38 of 37Please Scan to Rate This Paper