《SESSION 31 Energy Harvesting and IoT Power.pdf》由會員分享,可在線閱讀,更多相關《SESSION 31 Energy Harvesting and IoT Power.pdf(235頁珍藏版)》請在三個皮匠報告上搜索。
1、ISSCC 2025SESSION 31 Energy Harvesting and IoT Power31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference1 of 97An Inductor-less Capacitor-less Synchronous Piez
2、oelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing SchemeYuchen Wei1,Xinling Yue1,Zhiyuan Chen2,Sijun Du11Delft University of Technology,The Netherlands2Fudan University,China31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harve
3、sting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference2 of 97Outline Introduction and Prior Arts Proposed Energy Harvesting Platform Measurement Results Conclusion31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Har
4、vesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference3 of 97IntroductionConnected IoT devices growing 13.8%to 18.8 billion in 2024 IoT Analytics 202431.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Pla
5、tform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference4 of 97IntroductionConnected IoT devices growing 13.8%to 18.8 billion in 2024 IoT Analytics 202431.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with
6、Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference5 of 97IntroductionConnected IoT devices growing 13.8%to 18.8 billion in 2024 IoT Analytics 202431.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharin
7、g Scheme 2025 IEEE International Solid-State Circuits Conference6 of 97IntroductionImpracticalConnected IoT devices growing 13.8%to 18.8 billion in 2024 IoT Analytics 202431.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharin
8、g Scheme 2025 IEEE International Solid-State Circuits Conference7 of 97IntroductionKinetic Energy HarvestingConnected IoT devices growing 13.8%to 18.8 billion in 2024 IoT Analytics 202431.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform wi
9、th Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference8 of 97Kinetic Energy Harvesting(EH)Kinetic Energy31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-Stat
10、e Circuits Conference9 of 97Kinetic Energy Harvesting(EH)Kinetic EnergyPiezoelectric Harvester31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference10 of 97Kinet
11、ic Energy Harvesting(EH)Kinetic EnergyPiezoelectric HarvesterElectromagnetic Harvester31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference11 of 97Kinetic Energ
12、y Harvesting(EH)Kinetic EnergyPiezoelectric HarvesterElectromagnetic HarvesterHybrid Kinetic Energy Harvesting InterfaceDC supplyWireless Sensors31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE Interna
13、tional Solid-State Circuits Conference12 of 97Piezoelectric(PE)Energy Harvesting31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference13 of 97Piezoelectric(PE)En
14、ergy Harvesting31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference14 of 97PE Prior Art:Full-Bridge RectifierSimplicityLow efficiencyFull-bridge rectifierWaste
15、d chargeVBFVBF31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference15 of 97PE Prior Art:Inductor-Based Bias-Flip RectifierA.Badel,2005Y.Ramadass,2009Wasted char
16、geHigher Energy Extraction PerformanceAn off-chip inductor is neededVBFVBF31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference16 of 97Electromagnetic(EM)Energy
17、 Harvesting31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference17 of 97Electromagnetic(EM)Energy Harvesting31.1:An Inductor-less Capacitor-less Synchronous Pie
18、zoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference18 of 97EM Prior Art:Current-Mode Rectifier Boost converter for dual-polarity input VEM31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electroma
19、gnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference19 of 97Prior PE+EM Hybrid TopologyS.Chamanian,201931.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Shari
20、ng Scheme 2025 IEEE International Solid-State Circuits Conference20 of 97The Roles of the InductorS.Chamanian,2019 PE Bias-Flip DC/DC ConversionThe roles of L:31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 202
21、5 IEEE International Solid-State Circuits Conference21 of 97The Roles of the InductorS.Chamanian,2019Question:How to remove it?PE Bias-Flip DC/DC ConversionThe roles of L:31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharin
22、g Scheme 2025 IEEE International Solid-State Circuits Conference22 of 97Outline Introduction and Prior Arts Proposed Energy Harvesting Platform Measurement Results Conclusion31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sha
23、ring Scheme 2025 IEEE International Solid-State Circuits Conference23 of 97Proposed Coil-Sharing SchemeBias-flip+current-modeDC-DC path for different loadRegulated outputInductor-lessCapacitor-less31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting
24、 Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference24 of 97Synchronous Hybrid Energy HarvesterVibration Piezoelectric HarvesterFixed Endz(t)kHYdHYMass mHY31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Pla
25、tform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference25 of 97Synchronous Hybrid Energy HarvesterMagnetVibration Piezoelectric HarvesterFixed Endz(t)kHYdHYMass mHY31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting P
26、latform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference26 of 97Synchronous Hybrid Energy HarvesterMagnetVibration Piezoelectric HarvesterFixed Endz(t)kHYdHYMass mHYCoil31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harves
27、ting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference27 of 97Synchronous Hybrid Energy HarvesterMagnetVibration Piezoelectric HarvesterFixed Endz(t)kHYdHYMass mHYCoilChip1.8V5VBAT31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic H
28、ybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference28 of 97Synchronous Hybrid Energy HarvesterThe EM and PE harvesters share one mass-spring-damper systemgenerate synchronous energy/signalsMagnetVibration Piezoelectric HarvesterFixed Endz
29、(t)kHYdHYMass mHYCoilChip1.8V5VBAT31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference29 of 97The Roles of the EM Coil EM energy source31.1:An Inductor-less Ca
30、pacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference30 of 97The Roles of the EM Coil EM energy source31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hyb
31、rid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference31 of 97The Roles of the EM Coil EM energy source PE bias-flip inductor31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with
32、Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference32 of 97The Roles of the EM Coil EM energy source PE bias-flip inductor DC-DC inductorTo assist high load conditions31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platf
33、orm with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference33 of 97The Roles of the EM Coil EM energy source PE bias-flip inductor DC-DC inductorTo assist high load conditions31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvest
34、ing Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference34 of 97As a PE Bias-Flip Inductor?Requirement:The coil has zero energy when being used for PE bias-flip31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting
35、 Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference35 of 97As a PE Bias-Flip Inductor?Requirement:The coil has zero energy when being used for PE bias-flip31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Pl
36、atform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference36 of 97As a PE Bias-Flip Inductor?Point B:Zero displacementMax.velocityMax.VEMand IPRequirement:The coil has zero energy when being used for PE bias-flip31.1:An Inductor-less Capacitor-less Synchronous Piezoelect
37、ric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference37 of 97As a PE Bias-Flip Inductor?Point B:Zero displacementMax.velocityMax.VEMand IPPoints A and C:Max.displacementZero velocityZero VEMand IPRequirement:The coil ha
38、s zero energy when being used for PE bias-flip31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference38 of 97As a PE Bias-Flip Inductor?BACPoint B:Zero displaceme
39、ntMax.velocityMax.VEMand IPPoints A and C:Max.displacementZero velocityZero VEMand IPRequirement:The coil has zero energy when being used for PE bias-flip31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEE
40、E International Solid-State Circuits Conference39 of 97As a PE Bias-Flip Inductor?BACPoint B:Zero displacementMax.velocityMax.VEMand IPPoints A and C:Max.displacementZero velocityZero VEMand IPVEMand IPare in phaseRequirement:The coil has zero energy when being used for PE bias-flip31.1:An Inductor-
41、less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference40 of 97As a PE Bias-Flip Inductor?BACPoint B:Zero displacementMax.velocityMax.VEMand IPPoints A and C:Max.displacementZero
42、velocityZero VEMand IPPE bias-flip momentsVEMand IPare in phaseRequirement:The coil has zero energy when being used for PE bias-flip31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-
43、State Circuits Conference41 of 97Synchronous PE Bias-FlippingVBFIcoilIPCPLEMVEMVNVPVBF31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference42 of 97tSynchronous
44、PE Bias-FlippingVBFIcoilPE voltage flippedIPCPLEMVEMVNVPVBF31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference43 of 97tSynchronous PE Bias-FlippingVBFIcoilEM
45、coil used as a bias-flip inductorPE voltage flippedIPCPLEMVEMVNVPVBFt31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference44 of 97The Roles of the EM Coil EM en
46、ergy source PE bias-flip inductor DC-DC inductorTo assist high load conditions31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference45 of 97The Roles of the EM C
47、oil EM energy source PE bias-flip inductor DC-DC inductorTo assist high load conditions31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference46 of 97As a DC-DC I
48、nductor?Requirement:EM harvested energy is not wasted during DC/DC 31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference47 of 97As a DC-DC Inductor?IcoiltRequir
49、ement:EM harvested energy is not wasted during DC/DC 31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference48 of 97As a DC-DC Inductor?IcoiltVOUTHysteresis Windo
50、wRequirement:EM harvested energy is not wasted during DC/DC 31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference49 of 97As a DC-DC Inductor?IcoiltVOUTHysteresi
51、s WindowRequirement:EM harvested energy is not wasted during DC/DC 31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference50 of 97As a DC-DC Inductor?IcoiltVOUTHy
52、steresis Window(1)Positive connection(1)Requirement:EM harvested energy is not wasted during DC/DC 31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference51 of 97
53、As a DC-DC Inductor?IcoiltVOUTHysteresis Window(1)Positive connection(1)Requirement:EM harvested energy is not wasted during DC/DC 31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-S
54、tate Circuits Conference52 of 97As a DC-DC Inductor?IcoiltVOUTHysteresis Window(1)Positive connection(1)(2)(2)Negative connectionRequirement:EM harvested energy is not wasted during DC/DC 31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform
55、 with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference53 of 97As a DC-DC Inductor?IcoiltVOUTHysteresis Window(1)Positive connection(1)(2)(2)Negative connectionRequirement:EM harvested energy is not wasted during DC/DC 31.1:An Inductor-less Capacitor-less Synchronous Piezoe
56、lectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference54 of 97As a DC-DC Inductor?IcoiltVOUTHysteresis Window(1)Positive connection(1)(2)(3)(2)Negative connection(3)Flip connection assisted by the PE bias-flip signal
57、Requirement:EM harvested energy is not wasted during DC/DC 31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference55 of 97The Roles of the EM Coil EM energy sourc
58、e PE bias-flip inductor DC-DC inductorTo assist high load conditions31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference56 of 97Proposed Coil-Sharing Power Sta
59、ge31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference57 of 97Proposed Coil-Sharing Power StageHybrid Energy Harvester(off-chip)31.1:An Inductor-less Capacitor
60、-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference58 of 97Proposed Coil-Sharing Power StagePE Rectifier(on-chip)Bias-flip rectifierHybrid Energy Harvester(off-chip)31.1:An Inductor-less Ca
61、pacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference59 of 97Proposed Coil-Sharing Power StageEM Rectifier(on-chip)Boost converter(current mode)PE Rectifier(on-chip)Bias-flip rectifier
62、Hybrid Energy Harvester(off-chip)31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference60 of 97Operation Modes Power Transfer PathsCPLEMVEMIPIcoilVOUT1(5V)VOUT2(
63、1.8V)BATCPERLOAD1CEMRLOAD2PE HarvesterEM HarvesterProposed Chip31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference61 of 97Operation Modes Power Transfer Paths
64、CPLEMVEMIPIcoilVOUT1(5V)VOUT2(1.8V)BATCPERLOAD1CEMRLOAD2PE HarvesterEM HarvesterProposed ChipOne condition:Harvested Power Load?31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-Stat
65、e Circuits Conference62 of 97Operation Modes Power Transfer PathsCPLEMVEMIPIcoilVOUT1(5V)VOUT2(1.8V)BATCPERLOAD1CEMRLOAD2PE HarvesterEM HarvesterProposed ChipOne condition:Harvested Power Load?Yes(light load)Source to Load(S2L)Source to Battery(S2B)31.1:An Inductor-less Capacitor-less Synchronous Pi
66、ezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference63 of 97Operation Modes Power Transfer PathsCPLEMVEMIPIcoilVOUT1(5V)VOUT2(1.8V)BATCPERLOAD1CEMRLOAD2PE HarvesterEM HarvesterProposed ChipOne condition:Harvest
67、ed Power Load?Yes(light load)Source to Load(S2L)Source to Battery(S2B)No(heavy load)Battery&Source to Load(BS2L)31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Confe
68、rence64 of 97Current Path Under Light LoadLight Load:Source to Load(S2L)Source to Battery(S2B)S2L from EMS2B from EM31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits C
69、onference65 of 97Current Path Under Light LoadLight Load:Source to Load(S2L)Source to Battery(S2B)S2L from EMS2B from EM31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circui
70、ts Conference66 of 97Current Path Under Light LoadLight Load:Source to Load(S2L)Source to Battery(S2B)S2L from EMS2B from EM31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Ci
71、rcuits Conference67 of 97Current Path Under Heavy LoadHeavy Load:Battery&Source to Load(BS2L)BS2L Charging VOUT1 VEM 0V31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuit
72、s Conference68 of 97Chip Architecture31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference69 of 97Chip ArchitectureMAXS0S5S6S1S2S3S4SBFSBFS7S9S10COUT2IPCPCOVPVN
73、VDD5VS8LEMVEMVOUT2(1.8V)VBFIcoilActive DiodeaPower stageCOUT1BATVBATHybridenergy harvesterVOUT1(5V)31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference70 of 97
74、Chip ArchitectureMAXS0S5S6S1S2S3S4SBFSBFS7S9S10COUT2IPCPCOVPVNVDD5VS8LEMVEMVOUT2(1.8V)VBFIcoilActive DiodeaPower stageCOUT1BATVBATHybridenergy harvesterVOUT1(5V)VREF,PEPE_STOPE_BBVO2VREF,EMEM_STOEM_BBWindow CompOutput regulation31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electroma
75、gnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference71 of 97Chip ArchitectureMAXS0S5S6S1S2S3S4SBFSBFS7S9S10COUT2IPCPCOVPVNVDD5VS8LEMVEMVOUT2(1.8V)VBFIcoilActive DiodeaPower stageCOUT1BATVBATHybridenergy harvesterVOUT1(5V)VREF,PEPE_
76、STOPE_BBVO2VREF,EMEM_STOEM_BBWindow CompOutput regulation31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference72 of 97Chip ArchitectureMAXS0S5S6S1S2S3S4SBFSBFS7
77、S9S10COUT2IPCPCOVPVNVDD5VS8LEMVEMVOUT2(1.8V)VBFIcoilActive DiodeaPower stageCOUT1BATVBATHybridenergy harvesterVOUT1(5V)VREF,PEPE_STOPE_BBVO2VREF,EMEM_STOEM_BBWindow CompOutput regulation31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform w
78、ith Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference73 of 97Outline Background and Prior Arts Proposed Energy Harvesting Platform Measurement Results Conclusion31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform
79、with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference74 of 97Chip Micrograph 180nm BCD process 1.08mm2active area31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE Internationa
80、l Solid-State Circuits Conference75 of 97Key Signals to be MeasuredCPLEMVEMIPBATCPERLOAD1CEMRLOAD2PE HarvesterEM HarvesterProposed Chip31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Sol
81、id-State Circuits Conference76 of 97Key Signals to be MeasuredRegulated outputs(VOUT1and VOUT2)CPLEMVEMIPBATCPERLOAD1CEMRLOAD2PE HarvesterEM HarvesterProposed ChipVOUT1VOUT231.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Shar
82、ing Scheme 2025 IEEE International Solid-State Circuits Conference77 of 97Key Signals to be MeasuredRegulated outputs(VOUT1and VOUT2)Voltage across the PE harvester(VBF)CPLEMVEMIPBATCPERLOAD1CEMRLOAD2PE HarvesterEM HarvesterProposed ChipVOUT1VOUT2VBF31.1:An Inductor-less Capacitor-less Synchronous P
83、iezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference78 of 97Key Signals to be MeasuredRegulated outputs(VOUT1and VOUT2)Voltage across the PE harvester(VBF)Current through the EM coil(Icoil)CPLEMVEMIPBATCPERLOA
84、D1CEMRLOAD2PE HarvesterEM HarvesterProposed ChipVOUT1VOUT2VBFIcoil31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference79 of 97Measurement Waveform(light load)V
85、OUT1is regulated at 5V with a ripple of 120mVBias-flip at zero-current point71%flip efficiency with the coilPE energy harvesting and VOUT1regulationVBFVOUT15V100mVPE Rectification5.1VGND31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform w
86、ith Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference80 of 97Measurement Waveform(light load)VOUT1is regulated at 5V with a ripple of 120mVBias-flip at zero-current point71%flip efficiency with the coilPE energy harvesting and VOUT1regulationVBFVOUT15V100mVPE Rectification5
87、.1VGND31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference81 of 97Measurement Waveform(light load)VOUT2is regulated at 1.8V with a ripple of 110mVCoil borrowed
88、 for PE bias-flip at zero-Icoilmoments(little spikes)EM energy harvesting and VOUT2regulationVOUT2Icoil200mV100mA50msEM Rectification1.9V1.79V31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE Internatio
89、nal Solid-State Circuits Conference82 of 97Measurement Waveform(light load)VOUT2is regulated at 1.8V with a ripple of 110mVCoil borrowed for PE bias-flip at zero-Icoilmoments(little spikes)EM energy harvesting and VOUT2regulationVOUT2Icoil200mV100mA50msEM Rectification1.9V1.79V31.1:An Inductor-less
90、Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference83 of 97VOUT2ICOIL10ms1.9V50mA1.79VMeasurement Waveform(heavy load)Transient Icoilunder heavy loadCoil is used in different roles
91、31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference84 of 97VOUT2ICOIL10ms1.9V50mA1.79VMeasurement Waveform(heavy load)Transient Icoilunder heavy loadCoil is u
92、sed in different rolesEM energy harvesting 31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference85 of 97VOUT2ICOIL10ms1.9V50mA1.79VMeasurement Waveform(heavy lo
93、ad)Transient Icoilunder heavy loadCoil is used in different rolesEM energy harvesting PE bias-flipping31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference86 of
94、 97VOUT2ICOIL10ms1.9V50mA1.79VMeasurement Waveform(heavy load)Transient Icoilunder heavy loadCoil is used in different rolesEM energy harvesting PE bias-flippingBS2L DC/DC inductorIcoil 0Icoil 031.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Pl
95、atform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference87 of 97VOUT2ICOIL10ms1.9V50mA1.79VMeasurement Waveform(heavy load)Transient Icoilunder heavy loadCoil is used in different rolesEM energy harvesting PE bias-flippingBS2L DC/DC inductorIcoilcrosses 031.1:An Induct
96、or-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference88 of 97Measured Icoil(heavy load)3.7ms17mAZoomed-in Icoil31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-
97、Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference89 of 97Measured Icoil(heavy load)3.7ms17mAZoomed-in Icoil31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform
98、 with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference90 of 97Measured Icoil(heavy load)3.7ms17mAZoomed-in IcoilPE bias-flip31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE I
99、nternational Solid-State Circuits Conference91 of 97Measured Icoil(heavy load)3.7ms17mAZoomed-in IcoilPE bias-flipIcoil 031.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circu
100、its Conference92 of 97Measurement Results Max 2.72mW harvested energy Peak 90%efficiency31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference93 of 97Measurement
101、 Results31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference94 of 97Measurement Results31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electroma
102、gnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference95 of 97Outline Introduction and Prior Arts Proposed Energy Harvesting Platform Measurement Results Conclusion31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electr
103、omagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference96 of 97ConclusionHybrid synchronous kinetic energy harvesting platformCoil-sharing schemeFully integrated(Inductor-less,capacitor-less)90%peak efficiency2.72mW peak output pow
104、er31.1:An Inductor-less Capacitor-less Synchronous Piezoelectric-Electromagnetic Hybrid Energy Harvesting Platform with Coil-Sharing Scheme 2025 IEEE International Solid-State Circuits Conference97 of 97ConclusionHybrid synchronous kinetic energy harvesting platformCoil-sharing schemeFully integrate
105、d(Inductor-less,capacitor-less)90%peak efficiency2.72mW peak output powerThank You for Harvesting My Talk Energy!31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid
106、-State Circuits Conference1 of 56A Biased-SECE Interface for Piezoelectric Energy Harvesting with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy ExtractionJiho Lee and Hyun-Sik KimKAIST,Daejeon,Korea31.2:A Biased-SECE Interface for PEH with G
107、eometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference2 of 56MotivationProposed Energy-Harvesting InterfaceDetailed Operational Principle of Biased-SECEGMC-MPPT with Recursive Relation
108、shipChip ImplementationMeasurement ResultsConclusionOutline31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference3 of 56OutlineMotivationProp
109、osed Energy-Harvesting InterfaceDetailed Operational Principle of Biased-SECEGMC-MPPT with Recursive RelationshipChip ImplementationMeasurement ResultsConclusion31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x
110、 Energy Extraction 2025 IEEE International Solid-State Circuits Conference4 of 56Piezoelectric Energy HarvestingA piezoelectric transducer converts vibration energy into electrical energyIt requires an interface circuit for a variant AC current sourceVibration EnergyPiezoelectricIP CP+-+-+-+-+-+-31.
111、2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference5 of 56Energy Harvesting with Full Bridge RectifierPower extraction of interface circuit v
112、aries with the extraction voltageMaximal Power Point(VMPP)Tracking is required for varying VOCIPCP+-VPQK=2CKVOC=QO+QC PRECT=2VRECT QOfKtIPQCQOtVRECTVP+-VRECTVRECTQOQCVRECTPRECTVMPP31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/V
113、OCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference6 of 56IPCP+-VPFBR+-VRECTtIPQCQOtVRECT=0.5 VOCVPVMPP=0.5VOCN Cycle1 CycleSenseSense VOC InputSample VOCconsumes 1 cycle,during which energy cannot be harvestedFrequent VOC-sampling under varying conditions l
114、owers the harvested energyPrevious Work(1),MPPT:Fractional Open Circuit Voltage1 M.Shim et al.,JSSC 201531.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Ci
115、rcuits Conference7 of 56IPCP+-VPP-SSHI+-VRECTPRECTi-1 vs PRECTiIPVP,P-SSHICycle1st2nd3rdithQOVRECTttti-1thi+1thQCPRECTSense PRECTi OutputIPCP+-VPP-SSHI+-VRECTPRECTi-1 vs PRECTiCycletttPRECTSense PRECTi OutputIPVPVRECT1st2nd3rdithi-1thi+1thPrevious Work(2),MPPT:Perturb&ObservePerturb VRECT,with MPPT
116、resolution(dV),depending on the comparison resultMPP tracking speed is inversely proportion to the MPPT resolution(dV)2 S.Li et al.,VLSI 201931.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2
117、025 IEEE International Solid-State Circuits Conference8 of 56Trade-off Oriented from Power ExtractionAccuracy and speed of MPPT trade off due to continuous IPand CRECTEnergy should be stored at input and sensed for continuous,fast MPPTCRECTSense InputCRECTSense Output IRECTVOC P&OVOC FOCVIPCPIPCPIRE
118、CT31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference9 of 56IPCP+-VPSECE+-VOUTIPVPVMIDtttVMIDIEXTIEXTtSECE stores charge on CPConvert all
119、charge with L and deliver it to COUT Fixed power extraction gain of 4Previous Work(3),Power Extraction:Synchronous Electric Charge Extraction6 S.Li et al.,ISSCC 202231.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and
120、9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference10 of 56OutlineMotivationProposed Energy-Harvesting InterfaceDetailed Operational Principle of Biased-SECEGMC-MPPT with Recursive RelationshipChip ImplementationMeasurement ResultsConclusion31.2:A Biased-SECE Interface for
121、 PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference11 of 56Biased-SECE,an improvement over SECEBiased-SECE improves power extraction beyond SECE using a bias voltage(VB)I
122、t achieves higher power extraction gain with VBand lower sensitivity to VBVP,SECEIPVP,Biased-SECEt02VOCVBVB+2VOCCBATVPVBtt+-+-+-+-+-IPCPIPCP31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 20
123、25 IEEE International Solid-State Circuits Conference12 of 56Power Extraction of Biased-SECEBiased-SECE achieves a)higher FoM than P-SSHI&SECE at MPPPEXTis b)less sensitive to the VB,c)even identical to SECE when VB=0VPEXTBiased-SECESECEVBb)a)c)P-SSHIBiased-SECE+VEXT|VP|P-SSHIVBt|VP|SECE2VOCtVEXTVB|
124、VP|t31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference13 of 56Operation of Biased-SECE(1/4)IPaccumulates in CP,then VPrises from VBwith 2
125、VOCuntil IP=0VACCis sampledPhase A+CBATIPCPSWPL,L+-VPIP 0IPCPtVACC=VB+2VOCIPILtVACCVBtVP31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conferenc
126、e14 of 56Operation of Biased-SECE(2/4)External inductor(L)converts charge of CPinto ILVEXTis a geometric mean of the sampled VBand VACCPhase E+CBATIPCPSWPL,L+-VPIP 0CPLtLILtSWPR,HSWPL,HILVACCVEXTtVPIPVACCVEXTVACCVBVACCVB31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achi
127、eving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference15 of 56Operation of Biased-SECE(3/4)Deliver extracted ILto CBATPhase D+IPCPSWPL,L+-VPIP 0LCBATtVEXTLCBATILtILSWBLSWLR,LVEXTtVPIP31.2:A Biased-SECE Interface for PEH w
128、ith Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference16 of 56Operation of Biased-SECE(4/4)Bias-Flip of VEXTto VBwhich is determined by flipping efficiency(F)VBis sampled,which wi
129、ll be used to derive the next VEXTPhase B+IPCP+-VPIP 0LCPLCBATILSWPR,HSWPL,HtILtVEXT -VB=-FVEXT VEXTt-VBVPIP31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-Stat
130、e Circuits Conference17 of 56Operation of Biased-SECE Phase A-starts for negative IPaccumulationEnergy accumulation,extraction,delivery and bias-flip repeats A+VACC+2VOCVBVEXT-VBtVP-VACC-VEXT E+,D+B+A-E-,D-B-CP+-VPAccumulationExtraction|VP|=VACC|VP|=VB|VP|=VEXTBias-Flip31.2:A Biased-SECE Interface f
131、or PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference18 of 56The power extraction of biased-SECE varies with VBBiased-SECE behaves as conventional SECE at VB=0VPower Extr
132、action of Biased-SECEBias-Flip ExtractionAccumulationVACC+2VOCVBVEXT-VBtVPVACCVEXTVBQOUTQBF2CPVOCVB+2VOCVB1FQP=2CPVOC=QOUT+QBFVBQOUTQBFPEXTPEXT=CPfP(VACC2-VEXT2)31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x
133、 Energy Extraction 2025 IEEE International Solid-State Circuits Conference19 of 56The Maximal Power Point(MPP)is a function of VOC(Input)and F(System)Power extraction at MPP is enhanced beyond SECEMaximal Power Point of Biased-SECEVB,MPP=f(VOC,F)=VBVB+2VOCVB1FdVBdPEXTPSECE=4VOC2CPfPPEXTVBVB,MPPPEXT,
134、MPP=CPfP4VOC21-F2 VB,MPPVEXT,MPPVACC,MPP2F2VOC1-F2 VBVEXTVACCVACC+2VOCVBVEXT-VBtVPBias-Flip ExtractionAccumulation31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Soli
135、d-State Circuits Conference20 of 56Biased-SECE always achieves higher FoM at MPP than P-SSHI under given FBiased-SECE efficiently harvests power even at low F(FoM 4 of”SECE”)FoM at Maximal Power PointFoMMPP=PEXT,MPP/PFBR,MAXF=0.1F=0.5F=0.9Biased-SECE4.045.3321P-SSHI2.22420F(Flipping Efficiency)FoM48
136、12162020.20.40.60.8P-SSHIBiased-SECESECE41-F2 VBBiased-SECEVBP-SSHIFoMFoMMPPMPP21-F 31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference21
137、of 56MPP error“x”in VBcausing VEXTand VACCto deviate from the MPPMPP error reduces power extraction of biased-SECE by F2x2from the PMPPPower Extraction under MPP ErrorVPtVB,MPP-VBVB,MPP(1-x)VEXTVACCPEXT=CPfP(1-F2x2)4VOC21-F2 PEXT=PMPP(1-F2x2)MPPVEXT,MPPVACC,MPPVB,MPPVBVB,MPPPMPPPEXT(1-x)Under MPP Er
138、ror(1-x)VEXTVACCVB(1-F2x)(1-x)31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference22 of 56MPP error“x”in VBreduces power extraction of P-SS
139、HI by x2from MPPBiased-SECE achieves lower sensitivity to MPP error in power extractionPower Extraction under MPP Error1-PEXT/PEXT,MPPF=0.1F=0.5F=0.9Biased-SECE0.01x20.25x20.81x2P-SSHIx2x2x2PEXT/PEXT,MPPVB/VB,MPP0.20.40.60.8100.20.40.60.81 1 4(F=0.5)PEXT,MPPBiased-SECE P-SSHIVB(1-x)(1-F2x2)Biased-SE
140、CEVB(1-x2)(1-x)P-SSHI31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference23 of 56Biased-SECE achieves a higher FoM at MPP compared to P-SSH
141、IBiased-SECE shows less sensitivity to MPP error than P-SSHIPower Extraction of Biased-SECE1-PEXT/PEXT,MPPBiased-SECE0.01x20.25x20.81x2P-SSHIx2x2x2FoMMPP=PEXT,MPP/PFBR,MAXF=0.1F=0.5F=0.9Biased-SECE4.045.3321P-SSHI2.22420PEXTBiased-SECEFoMMPPP-SSHI(1-x)VB,MPPVB31.2:A Biased-SECE Interface for PEH wit
142、h Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference24 of 56Maximal Power Point(MPP)is a function of VOC(Input)and F(System)Hard to sample VOCand compute F,and complex MPP for on-
143、line trackingMaximal Power Point of Biased-SECEBias-Flip ExtractionAccumulationVACC+2VOCVBVEXT-VBtVPPEXTVBVB,MPPPEXT,MPPPEXT,MPP=CPfP4VOC21-F2 VB,MPP=f(VOC,F)2F2VOC1-F2 2FVOC1-F2 2VOC1-F2 VB,MPPVEXT,MPPVACC,MPP31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9
144、%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference25 of 56Geometric Mean(GM)of VBand VACCis always equals to VEXTat the MPPThe immutable GM relationship at MPP serves as a reference for MPPTGeometric Mean Relationship at MPPVAC
145、C,MPPVB,MPPVEXT,MPP-VB,MPPtVPVPVACC,MPP VB,MPP=VEXT,MPPVB,MPPVEXT,MPPVACC,MPPGeometric Mean2FVOC1-F2=2F2VOC1-F2 2VOC1-F2 VEXTiVACCVBVACCiVBi GMC-MPPTt-VBi+1VACCiVBiVEXTi31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,
146、and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference26 of 56OutlineMotivationProposed Energy-Harvesting InterfaceDetailed Operational Principle of Biased-SECEGMC-MPPT with Recursive RelationshipChip ImplementationMeasurement ResultsConclusion31.2:A Biased-SECE Interface
147、 for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference27 of 56Proposed Geometric-Mean Computational MPPTGMC-MPPT sets VEXTi equal to the geometric mean of VACCi&VBiTrack
148、s MPP by utilizing on-harvesting voltages from VPnode without VOC&FVACCiVB iGMC MPPTVACCVBVEXTiFVOCVP+-VACC,MPPVB,MPPVEXT,MPP-VB,MPPtVP-VBi+1VACCiVBiVEXTiGMC-MPPTVBi VACCi=VEXTiVEXT,MPP=VB,MPP VACC,MPP31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Eff
149、iciency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference28 of 56Speed and Accuracy of GMC-MPPTGMC-MPPT iteratively sets VEXTi to the geometric mean of VACCi&VBiVEXTN converges to VEXT,MPPrapidly and accuratelyVEXT,MPP-VBi+1VACCiVBiVEXTiVACC,M
150、PPVB,MPP-VB,MPPiVEXTi12345VEXT,MPPVPGMC-MPPTVEXTN=VEXT,MPP VEXTiVACCVBVACCiVBi 31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference29 of 56
151、Recursive Relationship of GMC-MPPTVBis expressed as a recursive function of iteration number by iterative GMC-MPPTThe recursive function reduces MPP error by multiplying a constant each iterationVBi+1=F VBi (VBi+2VOC)VB,MPP-VBi+1 (VB,MPP-VBi)1+F22VP-VB2VACC1VB1VEXT1VACC2tVB3iVB,MPPVBi12345VEXTi=VBi
152、VACCi=VBi+1F31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference30 of 56Speed and Accuracy of GMC-MPPTa)Adaptive step size(=VBi+1-VBi)enabl
153、es fast tracking even at large VOCb)On-harvesting voltages settle at exact MPPVB,MPP-VBi+1 (VB,MPP-VBi)1+F22VP-VB2VB1tVB3VEXTiVACCVBVACCiVBi(0F1)iVB,MPPVBi12345a)b)31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9
154、.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference31 of 56Comparison of GMC-MPPT with P&OAdaptive step size of GMC-MPPT solves trade-off between speed and accuracyFixed MPPT resolution(VB)of P&O shows trade-off between speed and accuracyVBi/VB,MPPi(iteration)MPPT=99.9%F=60
155、%0.90.80.70.60.511.124681012141618 20P&O0.90.80.70.60.511.124681012141618 20F=60%VB=0.1VB,MPPProposed GMC-MPPTFastAccurateFastInaccuratei(iteration)31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extra
156、ction 2025 IEEE International Solid-State Circuits Conference32 of 56GMC-MPPTDCB-MPPT 4-FVBi-VBi+1tVP2VOC-VDCBitVPVDCBi+1VOC-FBiased-SECEP-SSHIiVBi/VDCBiVB,MPP/VDCB,MPPMPP Error12345Comparison of GMC-MPPT with DCB-MPPTBoth iterative GMC-MPPT&DCB-MPPT reduce MPP error by recursive functionMPP error b
157、efore convergence to MPP degrades power extraction4 X.Yue et al.,CICC 202431.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference33 of 56Compa
158、rison of GMC-MPPT with DCB-MPPT:MPPTGMC-MPPT achieves higher MPPT efficiency(MPPT)than DCB-MPPT under similar MPP error,due to biased-SECEs lower sensitivity to MPP error than P-SSHIAverage MPPT80%90%DCB GMC0123456Cycle100%F=60%91%75%Transient VOC(VOC 2VOC)(1-x)(1-x2)Biased-SECEP-SSHI1-(Fx)2 MPP Err
159、orPEXTVB,MPPVBPGMC0PDCB0ProposedISSCC23&CICC2431.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference34 of 56Comparison of GMC-MPPT with DCB-M
160、PPT:FoMBiased-SECE achieves higher FoM at MPP than P-SSHI under given FHigher MPPT&FoM at MPP lead to higher average FoM while tracking(1-x)Biased-SECEP-SSHITransient InputPDCB0PGMC0PGMC1PDCB1PGMCNPDCBNPEXTVB,MPPVBTransient VOC(VOC 2VOC)Average FoMCycle12345676.164.85Ideal FoM,GMC=6.25Ideal FoM,DCB=
161、5F=60%DCB GMCFoMi/i0123456ProposedISSCC23&CICC2431.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference35 of 56Power Extraction of GMC-MPPTGMC
162、-MPPT breaks trade-off between speed and accuracy by recursive relationshipBiased-SECE with GMC-MPPT extracts higher power with higher MPPTand FoMDCB-MPPTGMC-MPPTP&OBiasedSECEGMC MPPTVACCiVB iP-SSHIDCB MPPTfPDBUwith V Trade-Offc)Average FoMHigherLowerb)MPPT from MPP errorLess SensitiveSensitivea)Spe
163、ed,AccuracyNo Trade-OffNo Trade-OffVACCVBDBU=50%31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference36 of 56OutlineMotivationProposed Energ
164、y-Harvesting InterfaceDetailed Operational Principle of Biased-SECEGMC-MPPT with Recursive RelationshipChip ImplementationMeasurement ResultsConclusion31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Ex
165、traction 2025 IEEE International Solid-State Circuits Conference37 of 56Phase-to-Phase Controller for GMC-MPPTPhase to phase controller utilizes scaled on-harvesting voltage of VPnodea)Detects phase for biased-SECE,b)Geometric-mean-computation for MPPTVACCiVBiPhase to Phase Controller for GMC-MPPTVo
166、ltage Divider1216()VPLVPRa)Phase Detection for Biased-SECE(zero current of IP,IL)b)Geometric-mean-computation for MPPT(Generate VEXTi from VACCi,VBi)BiasedSECEGMC MPPTVACCVBVEXTi31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOC
167、Tracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference38 of 56Phase-to-Phase ControllerPVD detects zero current of IP,starting power extraction(E,D)Phase ends with bias-flip(B),and then accumulating charge(A)CMPPVDEVPL,DIVVPL,DIVZCDBias-Flip ControlVoltage Divide
168、rVPR,DIVVPR,DIVVPRVPL1216()A D B S/HVACC,DIV iVB,DIV i|VP,DIV|=|VPR,DIV-VPL,DIV|tD+B+A-E+VACC,DIV iVEXT,DIV iVB,DIV i+1PVDVACC,DIV i+1A+PVDE-31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2
169、025 IEEE International Solid-State Circuits Conference39 of 56Phase-to-Phase Controller A VEXT,DIV iCMPGeo.MeanVPL,DIVZCDBias-Flip ControlVoltage DividerVPR,DIVVPR,DIVVPRVPL1216()A D B|VP,DIV|=|VPR,DIV-VPL,DIV|E+tVACC,DIV iVEXT,DIV iVB,DIV iVB,DIV i+1 A VPL,DIVVACC,DIV iVB,DIV iS/HEPVDVACCi is sampl
170、ed at the start of E,and VBi is sampled at the start of AGeometric Mean calculator generates VEXT,DIVi from VACC,DIVi and VB,DIVi31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE Int
171、ernational Solid-State Circuits Conference40 of 56Implementation of Geometric Mean CalculatorIACC&IBare converted into square root values,then added together to form VG,tVG,t2impose geometric mean of IACC&IB.(MOS conducts I-to-V&V-to-I operation)IBIACCII2IACCIBIEXTItotV 2IBIACC:input:outputGeometric
172、 Mean CalculatorI-to-VV-to-IVG,tIACCIBVGS,BIACCIBMt1VGS,ACCVG,tItot2IACCIBIEXTGeometric Mean Calculator31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Cir
173、cuits Conference41 of 56Implementation of Geometric Mean CalculatorMACC&MBconvert IACC&IBinto VG,tand Mt1&Mt2divide VG,tinto VGS,t1&VGS,t2Mt1conducts current(Itot)with average and geometric mean of IACC&IB0.5IACC0.5IBVREGItotIBMt1Mt20.5IACCIACC+IB2IACCIBIACCIBVREGItot0.5IBVGS,ACCVGS,BVGS,t1VGS,t2VG,
174、tMACCMBMt1Mt2MACCMBVG,tIACCIEXTItot=0.5(IACC+IB)+IACCIBItot=2IB+IACC()231.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference42 of 56Implemen
175、tation of Geometric Mean CalculatorChannel length modulation of MACCharms exact conversion of IACCinto VGS,ACCThe inaccuracy of geometric mean calculator was simulated to be less than 1%0.5IACC0.5IBVREGItotIBMt1Mt2VGS,ACCVGS,t1VGS,t2VG,tMACCMBMt1Mt2MACCMBVG,tIACCIEXT99.2%100.9%+1%-1%0%VB,DIVi-0.8%0.
176、9%0.7V0.75V0.8V0.85V0.9VVACC,DIVi 0.9V1.0V1.1VSimulated Inaccuracy(IEXT/IACCIB-1)31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference43 of
177、56Regulated OutputRegulated voltage(VREG)is supplied via a buck conversion from VBATControllers quiescent current consumption is simulated to be 271nAController Power BreakdownRegulated OutputIPCPSWLL,LVREGSWOVLLVLRFW:Freewheeling ILBU:Build-up with VBATIPCPVBATVREGSWBLSWOVLLVLR247nAGeometric Mean P
178、ower StageEtcAnalog24nAfP=260Hz VOC=0.8VDynamic350nA31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference44 of 56OutlineMotivationProposed E
179、nergy-Harvesting InterfaceDetailed Operational Principle of Biased-SECEGMC-MPPT with Recursive RelationshipChip ImplementationMeasurement ResultsConclusion31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energ
180、y Extraction 2025 IEEE International Solid-State Circuits Conference45 of 56Measurement SetupPiezoelectric device(PPA-1014)with 40nF,260-265Hz operating frequencyGMC-MPPT chip was fabricated in 180nm BCD processTest BoardShakerPiezoelectric(PPA-1014)2650m1520m31.2:A Biased-SECE Interface for PEH wit
181、h Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference46 of 56Startup of GMC-MPPT7.7 ms(2 Cycle)VPVACC=3.59VfP=260Hz2V3.85 ms F=60%ILVOC=1.3VStartup without redundant process,and im
182、mediate power extraction is performedGMC-MPPT requires 2 cycle at startup for convergence of MPPT31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits
183、Conference47 of 563.85msVPfP=260HzfP=265HzfP=265HzfP=260Hz3.5VVOC=0.8VVOC=1.6VVP7 Cyc.(26.95ms)VACC=2.42VVACC=2.42V7.7msVACC=4.61VVACC=4.61V F=60%fP=260HzVOC=0.8VVOC=1.6VGMC-MPPT under Transient fP,IP(VOC)Transient fPTransient VOCGMC-MPPT accommodates changes in fP&VOCTracks MPP within 7 cycles unde
184、r transient VOCof 0.8V31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference48 of 56GMC-MPPT under Transient VOCVOC 2V100msDynamic VOC Change
185、VP7 Cyc.5 Cyc.4 Cyc.6 Cyc.5 Cyc.7 Cyc.5 Cyc.4 Cyc.6 Cyc.1.3V 2.0V2.4V 2.1V 1.6V 1.3V 2.0V 2.4V 2.1V 1.6VGMC-MPPT decreases MPP error with adaptive step size at each iterationAdaptive|VACC|per cycle with respect to VOCenables fast and accurate tracking0.20.4VOC(V)Average|VACC|per Cycle V0.60.80.320.2
186、40.160.08Required#of Cycles N11284FixedGMCP&O 31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference49 of 56GMC-MPPT under Shock VibrationVPV
187、BAT1sZoom-In3V0.75V3.5V0.37V0.1s0.25sFoM=5.02xEEXT=29.74J40msGMC-MPPT achieves 5.02 FoM under 100ms-duration shock vibration31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE Internat
188、ional Solid-State Circuits Conference50 of 56Accuracy of GMC-MPPT under Periodic InputGMC-MPPT converges to MPP with high accuracy under periodic inputAchieves high MPPT efficiency(MPPT)under different VOCVP2.5V1ms30mAILVOC=0.8VVOC 0.6VF=88.5%fP=265HzZoom9.628.927.2027.720VP,|VP|2.5VIL5sVACCVEXTVBA+
189、E+D+B+A-20mA0.8V0.6V5.5V4.1V4.9V3.6V4.3V3.2V99.9%99.8%9.108.95VOCVACCVEXTVB MPPTFoM31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference51 o
190、f 56Static Performance of GMC-MPPT F=80%0.511.5VOC(V)1.000.990.98VACC(V)MPPT0.97Max MPPT=0.999FoM=8.26x73456VBRK6.6102468FoMSECEF=88.5%F=80%F=70%F=60%0.511.52VOC(V)211.8W161.3W92.09W,FoM=9.29x191.4WFoM=Max(POUT/PFBR,ideal)Minimum MPPTof GMC-MPPT was measured with 99.4%Maximum power extraction was re
191、corded with 211.8W and highest FoM of 9.2931.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference52 of 56VREGRegulation During Power Extractio
192、n5msVPF=88%VOC 0.8VfP=260Hz20mV30mA4V2VVREGILVP7.5mA50s20mA20mV204060Load Current(A)Max 90.2%44.4AConversion Efficiency(%)w/Controller Power10060708090VBAT=3.5VVREG=2.0VVREGwas regulated during power extraction of biased-SECE with a shared inductor The conversion efficiency for VREGpeaked at 90.2%31
193、.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference53 of 56Comparison with Piezoelectric EH-ICsP-SSHIP-SSHIPeriodicP&O(Output)PeriodicDCB(Ou
194、tput)97%N/R68.9ms*(12 cycles*)Depend on VRECT1.35s*for 0.5V(N/R)100ms*(N/R)98%Depend on CRECTBMBRPeriodicDCB(Input)52.6ms for 0.6V(11.7 cycles)15ms 38ms(2-5 cycles)99.9%IndependentBiased-SECEPeriodic&ShockGMC(Input)26.95ms for 0.8V(8.75 cycles)7.7ms(2 cycles)99.9%IndependentExtraction MethodInput Ty
195、peMPPT AlgorithmMPPT Time for VOC(Min.Cycle/1V of VOC)Startup Time(Required#of Cycles)Peak MPPT EfficiencyMPP Tracking Speed&AccuracyVLSI 2019 2JSSC 2024 3CICC 2024 4This WorkMSVR-SECEMPPTNot ApplicablePeriodic*ISSCC 20226N/R4.17x&N/R7.38x&N/R9.3x&Yes9.29x&5.02xMPPT with Shock InputFoM(Periodic&Shoc
196、k)3.2x&*Estimated from waveform&dataN/R=Not Reported FoM=Max(POUT)/PFBR,ideal(=CPVOC2fP)Flipping Efficiency(L)88.5%(1.5mH)86%(3.3mH)87.5%(N/R)82%(120H)N/A(22H)31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x E
197、nergy Extraction 2025 IEEE International Solid-State Circuits Conference54 of 56OutlineMotivationProposed Energy-Harvesting InterfaceDetailed Operational Principle of Biased-SECEGMC-MPPT with Recursive RelationshipChip ImplementationMeasurement ResultsConclusion31.2:A Biased-SECE Interface for PEH w
198、ith Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference55 of 56Conclusion Technical obstacles to track Maximal Power Point of piezoelectric transducer Complex maximal power point v
199、ariant with VOC,F Trade off between tracking speed and accuracy from sensing output Trade off between power extraction gain(FoM)and sensitivity to MPP error Proposed Geometric-Mean-Computational(GMC)MPPT technique Immutable geometric-mean relationship at MPP Tracking regardless of VOC,F Computation
200、of on-harvesting voltages Fast responsiveness and high accuracy Biased-SECE with GMC-MPPT High FoM and low sensitivity to MPP error Measurement Results 7 cycles for convergence under transient 0.8V of VOC Power extraction gain of x5.02 compared to ideal FBR under shock input Power extraction gain of
201、 x9.29 and maximum 99.9%MPPTunder steady input31.2:A Biased-SECE Interface for PEH with Geometric-Mean-Computational MPPT Achieving 99.9%MPPT Efficiency,8.75 Cycles/VOCTracking,and 9.3x Energy Extraction 2025 IEEE International Solid-State Circuits Conference56 of 56Thank You31.3:A Rectifier-less Pi
202、ezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference1 of 34A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle C
203、onvergence and 568%Shock Power ImprovementShunmin Jiang1,Xinling Yue1,Yuchen Ma1,Chao Wang2,Sijun Du11Delft University of Technology,Netherlands2Huazhong University of Science and Technology,China31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single
204、-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference2 of 34Energy HarvestingTraditionalPM SystemEnergy HarvestingV.S.Stable supply High supply power Redundant storage element Low supply Flexible supply Extracting from ambient energyWireless netwo
205、rksInternet of ThingsAmbient Energy31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference3 of 34Piezoelectric Transducer(PT)ForceMechanical ener
206、gy Electrical energy Substrate2.5cm31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference4 of 34Resonance(O(102)Hz)IP:AmARP:O(106)(negligible)CP
207、:O(10-810-7)F Piezoelectric Transducer(PT)Weakly coupled PT Applicable frequency Impedance matching Material life31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-St
208、ate Circuits Conference5 of 34FBR(Full Bridge Rectifier)Fully passive and autonomous Large wasteWasted31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuit
209、s Conference6 of 34FBR(Full Bridge Rectifier)Fully passive and autonomous Large wasteWasted31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conferenc
210、e7 of 34Bias-flip when IPchanges polarity High extraction efficiency(10X improvement compared to FBR in SOTA)(mW output power)SSHI(Synchronized Switch Harvesting on Inductor)A.Badel,2005,Y.Ramadass,2009 Difficult for impedance matchingVPTBFWasted31.3:A Rectifier-less Piezoelectric Energy Harvesting
211、Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference8 of 34=Relatively fixed when RLC loopis fixed=Characteristics of SSHIMPPT:Maximum Power Point Tracking31.3:A Rectifier-less Piezoelectric Energ
212、y Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference9 of 34RectifierMPPT:FOCV(Fractional Open Circuit Voltage)ISSCC 2014,M.ShimIP2VOCVPTVOC SamplingWasted31.3:A Rectifier-less Piezoel
213、ectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference10 of 34Rectifier Known MPPT destination(Fast convergence)Charge waste during VOCsampling Discontinuous MPPTMPPT:FOCV(F
214、ractional Open Circuit Voltage)ISSCC 2014,M.Shim31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference11 of 34 Continuous MPPT Complicated power
215、 monitor implementation Trade-off between MPPT accuracy and speed Unknown MPPT destination(Slow convergence)MPPT:P&O(Perturb&Observe)VLSI 2019,S.Li31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvemen
216、t 2025 IEEE International Solid-State Circuits Conference12 of 34 Continuous MPPT Simple MPPT implementation Unknown MPPT destination(Slow convergence)MPPT:DCB(Duty-Cycle Based)ISSCC 2023,X.Yue31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cy
217、cle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference13 of 34Periodical vibrationShock vibration Stable vibration amplitude Stable excitation frequency Damping vibration amplitude Random excitation frequency Easy for MPPT Hard for MPPTMPPT Applicatio
218、n:Periodical&Shock31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference14 of 34Shock vibration 0.90.95 VOCattenuation coefficient per cycle VOC
219、increases from 0 to maximum when shock arrivesMPPT Application:Shock100ms3VVPT Shock inputNatural damping31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circ
220、uits Conference15 of 34Existing Bias-flip MPPT techniques circuits:CAN satisfy the requirement of stable periodical vibrations CAN NOT achieve high tracking frequency and fast convergence at the same timeBias-flip rectifiers need new MPPT techniques for shock vibration scenarios MPPT Application:Exi
221、sting Problems31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference16 of 34 Sampling VOC by detecting VPTbetween 0 and 50%period DC-DC Regulati
222、ng VPTaround VMPP Achieving continuous VOCsampling Achieving fast regulationProposed Sense&Tracking MPPT theoryVVPTPT31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Soli
223、d-State Circuits Conference17 of 34 Sense VMPP and convergence to MPP within one cycle Proposed MPPT theoryVOC decreases from VOC1to VOC2VMPPTcalculation Forced 50%duty cycle for VOC sampling Setting regulation thresholdStart-upVReg1 VOC2VMPP2 VOC2tBuild upDC-DCBuild upDC-DCPositive:SampleNegative:T
224、rackttMPPTVOC1VMPP2 DC-DCBuild upDC-DC50%T50%TInitial TShock input31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference18 of 34 +1.450.76One-Cy
225、cle convergence limits31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference19 of 34RPCPIPSNSLNSPSLPSAPSANSBNSBPLCSPiezoelectricHarvesterPower s
226、tage topologyProposed power stage circuit31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference20 of 341:IPcharges CPRPCPIPSNSLNSPSLPSAPSANSBNSB
227、PLCSPiezoelectricHarvesterProposed power stage circuit131.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference21 of 342:CPcharges LRPCPIPSNSLNSPS
228、LPSAPSANSBNSBPLCSPiezoelectricHarvesterProposed power stage circuitL L231.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference22 of 343:L charges
229、 CSRPCPIPSNSLNSPSLPSAPSANSBNSBPLCSPiezoelectricHarvesterProposed power stage circuit331.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference23 of
230、 344:Bias-flipRPCPIPSNSLNSPSLPSAPSANSBNSBPLCSPiezoelectricHarvesterProposed power stage circuit431.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conf
231、erence24 of 34Proposed MPPT MonitorCombined Flip detection scheme31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference25 of 34Proposed MPPT Mon
232、itorUpdated period length every cycle 31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference26 of 34Proposed MPPT MonitorSample&Hold Linear calc
233、ulation cell31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference27 of 34RPCPIPSNSLNSPSLPSAPSANSBNSBPLCSDC-DC&Bias-FlipLevel shiftersLogic Synt
234、hesisVOC SamplerDuty CycleDetectorFlip DetectorVMPP GenerationDC-DC VoltageArbiterDC-DC ControllerP/N PhasePiezoelectrictransducerMPP MonitorVPTVSProposed top architecture220/600H100F31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Conver
235、gence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference28 of 3412345678780m860m1.Bias-flip control2.Duty cycle&static state control3.MPPT Monitor4.Regulation control5.Current reference6.Level shifters7.Flip detectors8.Power switches180nm BCD process0.67mm2active
236、 areaDie photo of the fabricated chip31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference29 of 34Measured transient waveform31.3:A Rectifier-l
237、ess Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference30 of 34Measured transient waveform31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Se
238、nse&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference31 of 34Measured performance718%power improvement568%power improvementPeriodShock31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track
239、 MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference32 of 34Simulation:480nWMeasurement:696nWStatic power consumptionSimulation:2.1WMeasurement:2.8WDynamic power consumptionMeasured performance4X smaller31.3:A Rectifier-less
240、 Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Circuits Conference33 of 34Comparison TableParametersThis workISSCC 2014ISSCC 2016JSSC 2018ISSCC 2020ISSCC 2023Rectifier TypeVPTRe
241、gulationFBRSSHISECESECESSHITechnology0.18um0.35um0.35um40nm0.6um0.18umMPPT algorithmSTRFOCVFOCVN/RP&ODCBMPPConvergencetime1 Cycle*2-3.5 CycleN/RN/R*840 Cycle*180CycleContinuous MPPYesNONOYesYesYesAD/DA needed?NONONONOYesNOExcitation typePeriodic&shockPeriodicPeriodic&shockPeriodic&shockPeriodicPerio
242、dicPower improvement718%(Periodic)568%(shock)97%681%(Periodic)289%(Shock)314%(Periodic)420%(shock)417%738%31.3:A Rectifier-less Piezoelectric Energy Harvesting Interface with a Sense&Track MPPT Achieving Single-Cycle Convergence and 568%Shock Power Improvement 2025 IEEE International Solid-State Cir
243、cuits Conference34 of 34ConclusionThe proposed interface circuit achieves:Continuous maximum power point tracking for SSHI Fast MPP convergence within one cycle MPPT for bias-flip rectifier under shock excitationThank you!31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC S
244、upporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference1 of 47A 91.25%Peak Power-Conversion-Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Sin
245、gle External Capacitor for mm-Scale IoT ApplicationsQishen Fang1,Feiyu Li1,Rui P.Martins1,2,Man-Kay Law11University of Macau,Macau,China2Instituto Superior Tcnico,Universidade de Lisboa,Portugal31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst
246、 Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference2 of 47Outline Background and Motivation Proposed System-Level Solution Proposed Reconfigurable Power StageHV CSCR SC ConverterSoft Shifting During M,N Reconfigurat
247、ionCircuit Implementation Measurement Results Conclusions31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference3
248、 of 47Sensing(A level)Wireless DataTransmission(mA level)Compact BatteryAuxiliaryStoragemm-Scale IoT System High burst power up to mW during data transmission Energy harvesting(EH)enables autonomous systemCurrentTimeSensing(A level)Transmission(mA level)Sleep&EHFew to tens of ms31.4:A 91.25%Peak Pow
249、er-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference4 of 47CurrentTimeSensing(A level)Transmission(mA level)Sleep&EHFew to tens of
250、msCompact Solid-State Battery Existing mm-scale solid-state batteries cannot delivery burst power during transmissionHigh internal resistance 2001812 package with 100Ah capacityDriving 5mA load for only 0.8ms pulse with 1s intervalTDK CeraCharge31.4:A 91.25%Peak Power-Conversion Efficiency Capacitiv
251、e Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference5 of 47Prior Works:Reconfigurable On-chip CSTOHigh EEE(energy extraction efficiency)up to 78.4%Limited burst ener
252、gy to supply 90W for 9.7s(only 0.87nJ)J.Wu,ASSCC23Vo1Vo2Vin3VinVoutVVinIoutTimeRLon-chipPV CellSC branch BStorage4CflySC branch ARegulation4CflyVo2Vo1Normal Energy StorageBurst output31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Del
253、ivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference6 of 47SC Regulation16CflyCSTOVoutVSTOVinVoutVSTOVVinIoutTimeRLon-chipPV Cellsmall VSTOVminPrior Works:Single Off-chip CSTO+SC ConverterLarge off-chip CSTOavailableLow EEE dow
254、n to only 2%due to small VSTOBulky CSTOto get more burst energyH.Cheng,JSSC2131.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State
255、Circuits Conference7 of 47SC Regulation16CflyCSTOVoutVSTOVinVoutVSTOVVinIoutTimeRLon-chipPV Cellsmall VSTOVminPrior Works:Single Off-chip CSTO+SC ConverterLarge off-chip CSTOavailableLow EEE down to only 2%due to small VSTOBulky CSTOto get more burst energyH.Cheng,JSSC21How to improve EEE and reduce
256、 CSTOsize?31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference8 of 47Outline Background and Motivation Propose
257、d System-Level Solution Proposed Reconfigurable Power StageHV CSCR SC ConverterSoft Shifting During M,N ReconfigurationCircuit Implementation Measurement Results Conclusions31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Usin
258、g a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference9 of 47EEE Improvement On-chip reconfiguration to achieve larger VSTOReconfigurable wide input range SCVoutVSTORLon-chiplarge VSTO to improve EEECSTOCflyVTimeburstVSTOAvailable Energy(E
259、av):Eav=CSTO(Vt02 Vt12)CSTOVSTO231.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference10 of 47Reconfigurable wid
260、e input range SCVoutVSTORLon-chipContinuously droppingCSTOCflyVTimeburstVSTOEEE Improvement On-chip reconfiguration to achieve larger VSTO Efficient conversion with continuously dropping VSTOAvailable Energy(Eav):Eav=CSTO(Vt02 Vt12)CSTOVSTO2EEEExtracted EnergyTotal Stored Energy=EavSCEstored=Energy
261、Extraction Efficiency(EEE):31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference11 of 47EfficiencyVCRConvention
262、al single-stage SCReconfigurable multi-VCR SCCSCR SCHigh SC during wide VCR rangeContinuously-Scalable-Conversion-Ratio(CSCR)Reduce charge sharing loss(CSL)by small VTand VB Further improve PCE by reconfiguring#of M,NN.Butzen,JSSC19ChargingDischargingVinVTVTVTGNDVTVoutVBVBVBVB VTVBMN31.4:A 91.25%Pea
263、k Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference12 of 470501001502002500246810Stored Energy(J)GRM187R61A226ME15(Cnominal=2
264、2F)Capacitor Volatge(V)14J84JVSTO=1VVSTO=3.8VVSTO=4.3Vsmall Vstep up/downmedium VMore Eavfrom same CSTO Step up/down CSCR SC extracts more energy from CSTOMurata MLCC,22F0.7mm0.8mm1.6mmConventional SC with fixed VCRCSCR step up/down14J84J61.8V burst load31.4:A 91.25%Peak Power-Conversion Efficiency
265、Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference13 of 47Conventional SC with fixed VCRCSCR step up/downProposed HV storage+CSCR14J84J196J62.305010015020
266、02500246810Stored Energy(J)GRM187R61A226ME15(Cnominal=22F)Capacitor Volatge(V)14J84J196JVSTO=8.6Vsmall Vstep up/downmedium VHV storagelarge VProposed HV Storage Improve both Estoredand Eavwithout increasing CSTOsize Small CSTOto provide enough energyMurata MLCC,22F0.7mm0.8mm1.6mm31.4:A 91.25%Peak Po
267、wer-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference14 of 47Circuit-Level Challenges CSCR SC needs stacked LV MOS and CFLYfor HV o
268、peration,leading to extra area and lossHigh VinVTMVT1VoutVBNVB1.Cell 1.31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circui
269、ts Conference15 of 47Circuit-Level Challenges M,N reconfiguration can improve PCE depending on VCR2468101214C7C6C5C4C3C2C12468101214C7C6C5C4C3C2C1VXVT3GNDVT2VoutVB1M2N1M1N2VXVT3GNDVoutVB2VB1VTVBVTVBVB VTVB VT31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up t
270、o 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference16 of 472468101214C7C6C5C4C3C2C12468101214C7C6C5C4C3C2C1VXVT3GNDVT2VoutVB1M2N1M1N2VXVT3GNDVoutVB2VB1Voltage differenceVCFLYCircuit-Level Challenges La
271、rge VCFLYintroduce loss,might disturb the Vout31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference17 of 472468
272、101214C7C6C5C4C3C2C12468101214C7C6C5C4C3C2C1VXVT3GNDVT2VoutVB1M2N1M1N2VXVT3GNDVoutVB2VB1Voltage differenceVCFLYCircuit-Level Challenges Large VCFLYintroduce loss,might disturb the Vout How to build a HV CSCR SC?How to reconfigure M,N without messing up Vout?31.4:A 91.25%Peak Power-Conversion Efficie
273、ncy Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference18 of 47Outline Background and Motivation Proposed System-Level Solution Proposed Reconfigurable Pow
274、er StageHV CSCR SC ConverterSoft Shifting During M,N ReconfigurationCircuit Implementation Measurement Results Conclusions31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Appl
275、ications 2025 IEEE International Solid-State Circuits Conference19 of 47VoutVSTOon-chipRLCFLYreallocation2:1 SCReconfigurable Step up/down CSCR SC13 CellsCurrentlimiterVPVPV CellVBATCSTOProposed Reconfigurable HV CSCR SC Single 2:1 SC at CSCR input CSCR SC operates in LV between VSTOand GND CFLYreal
276、locate between two SC stage to improve PCE31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference20 of 47Currentl
277、imiterVBATCSCR SCRLVoutNormalEnergy flowProposed Reconfigurable HV CSCR SC Battery supply light current CSTOin parallel with batteryVVoutIoutTimeNormal Step down2VBATVBATVSTO=2VBATStep upVminLarge VSTO31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68m
278、J Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference21 of 47Energy Storage2:1SCCSCR SCCurrentlimiterCSTOVSTOVX=VBATPV CellVPVVVoutIoutTimeEnergy StorageStep down2VBATVBATVSTO=2VBATStep upVminLarge VSTOProposed
279、 Reconfigurable HV CSCR SC 2:1 SC charge CSTOto 2VBAT CSCR SC keep output or EH to battery depends on light31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 I
280、EEE International Solid-State Circuits Conference22 of 472:1SCCSCR SCRLVoutCSTOBurst output:VSTOVBATVX=VSTO/2VSTOLarge Burst CurrentVVoutIoutTimeBurst outputStep down2VBATVBATVSTO=2VBATStep upVminLarge VSTOProposed Reconfigurable HV CSCR SC CSTOsupply burst current 2:1 SC step down VSTOfirst CSCR re
281、gulate Voutwith dropping VX31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference23 of 47VVoutIoutTimeBurst outp
282、utStep down2VBATVBATVSTO=2VBATStep upVminLarge VSTOBurst output:VSTOVBATCSCR SCRLVoutCSTOVSTOLarge Burst CurrentProposed Reconfigurable HV CSCR SC All CFLYreallocate to CSCR Step down first until VSTOVout Step up until VSTOis too low31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Mana
283、gement IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference24 of 47Outline Background and Motivation Proposed System-Level Solution Proposed Reconfigurable Power StageHV CSCR SC Conver
284、terSoft Shifting During M,N ReconfigurationCircuit Implementation Measurement Results Conclusions31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE Intern
285、ational Solid-State Circuits Conference25 of 47Proposed Reconfiguration at Base Phase 1,8are base phase Base phase has same connection regardless of M,N Same charge-discharge sequence after base phasesM2N1M1N2Proposed soft shifting during reconfigurationOdd phaseEven phasebase phase12345678910111213
286、141234567891011121314VXVT3GNDVT2VoutVB2VB1dischargingchargingdischargingcharging31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-Sta
287、te Circuits Conference26 of 47VXVT3GNDVT2VoutVB12468101214C7C6C5C4C3C2C1M2N1Last Phase in M2N1Odd phaseEven phase All 7 CFLYare in even phase Every CFLYis two phases behind the previous one31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Ener
288、gy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference27 of 47791113135C7C6C5C4C3C2C1VXVT3GNDVT2VoutVB1VXVT3GNDVT2VoutVB12468101214C7C6C5C4C3C2C1M2N1M1N2M2N1Start ReconfigurationOdd phaseEven phase Next phase,C1switch to M1
289、N2 at base phase 1 ALL 7 CFLYforms 4 power paths in total31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference2
290、8 of 47791113135C7C6C5C4C3C2C1VXVT3GNDVT2VoutVB1VXVT3GNDVT2VoutVB12468101214C7C6C5C4C3C2C1M2N1M1N2M2N1M1N2Start ReconfigurationOdd phaseEven phase After base phase,C1still can form path with C4in M2N131.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ
291、 Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference29 of 47M2N1M1N2Internal rails soft shiftingGNDVB1VoutVT2VT3VXVB1VB2VT3Vt8101214246C7C6C5C4C3C2C1VXVT3GNDVT2VoutVB1VXVT3GNDVoutVB2VB1M2N1M1N2P1P2P3Soft Shifti
292、ng During Reconfiguration During reconfiguration,3 power paths remain available It draws more energy to loads from the left 3 paths31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale
293、 IoT Applications 2025 IEEE International Solid-State Circuits Conference30 of 47Outline Background and Motivation Proposed System-Level Solution Proposed Reconfigurable Power StageHV CSCR SC ConverterSoft Shifting During M,N ReconfigurationCircuit Implementation Measurement Results Conclusions31.4:
294、A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference31 of 47HV switchLV switchCFLYA,1SBout,1SB6,1SB5,1SB4,1SB3,1SB2
295、,1SB1,1SGND,1STX,1ST6,1ST5,1ST4,1STout,1CFLYB,1VXVT6VT5VT4VoutVB6VB5VB4VB3VB2VB1VXVBATCell 1Cell 132:1 SC CSCR SCVSTOSLa,1SLb,1SHa,1SHb,1SSTOX,1SBATX,1SCB,1SCT,1LS&DriverNOPCLK GeneratortshortLS&DriverVPVSBX,1VXclk1aclk1bGate ctrl.signals clk1 for odd cellsclk2 for even cellsProposed Reconfigurable
296、HV CSCR SC 13 power cells,each with 2 CFLY LDMOS SCT,1withstand possible HV(VSTO-Vout)M+N=6 Reconfiguration from M3N3 to M0N631.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT A
297、pplications 2025 IEEE International Solid-State Circuits Conference32 of 47HV switchLV switchCFLYA,1SBout,1SB6,1SB5,1SB4,1SB3,1SB2,1SB1,1SGND,1STX,1ST6,1ST5,1ST4,1STout,1CFLYB,1VXVT6VT5VT4VoutVB6VB5VB4VB3VB2VB1VXVBATCell 1Cell 132:1 SC CSCR SCVSTOSLa,1SLb,1SHa,1SHb,1SSTOX,1SBATX,1SCB,1SCT,1LS&Driver
298、NOPCLK GeneratortshortLS&DriverVPVSBX,1VXclk1aclk1bGate ctrl.signals clk1 for odd cellsclk2 for even cellsHV SWProposed Reconfigurable HV CSCR SC 13 power cells,each with 2 CFLY LDMOS SCT,1withstand possible HV(VSTO-Vout)M+N=6 Reconfiguration from M3N3 to M0N631.4:A 91.25%Peak Power-Conversion Effic
299、iency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference33 of 47HV switchLV switchCFLYA,1SBout,1SB6,1SB5,1SB4,1SB3,1SB2,1SB1,1SGND,1STX,1ST6,1ST5,1ST4,1ST
300、out,1CFLYB,1VXVT6VT5VT4VoutVB6VB5VB4VB3VB2VB1VXVBATCell 1Cell 132:1 SC CSCR SCVSTOSLa,1SLb,1SHa,1SHb,1SSTOX,1SBATX,1SCB,1SCT,1LS&DriverNOPCLK GeneratortshortLS&DriverVPVSBX,1VXclk1aclk1bGate ctrl.signals clk1 for odd cellsclk2 for even cells3 rails3 rails3 railsexclusiveProposed Reconfigurable HV CS
301、CR SC 13 power cells,each with 2 CFLY LDMOS SCT,1withstand possible HV(VSTO-Vout)M+N=6 Reconfiguration from M3N3 to M0N631.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applic
302、ations 2025 IEEE International Solid-State Circuits Conference34 of 47EA+-VCOGate Control Generator10013-bitADCDecoderCMP+-NOPCLK GeneratortlongclkMSEN_BBEN_21VSTOVBATVXVoutVoutVPVVMPPTVREFPFM loopOutphasingM&N selectionEN_EHDFFfSWHV switchLV switchCFLYA,1SBout,1SB6,1SB5,1SB4,1SB3,1SB2,1SB1,1SGND,1S
303、TX,1ST6,1ST5,1ST4,1STout,1CFLYB,1VXVT6VT5VT4VoutVB6VB5VB4VB3VB2VB1VXVBATCell 1Cell 132:1 SC CSCR SCVSTOSLa,1SLb,1SHa,1SHb,1SSTOX,1SBATX,1SCB,1SCT,1LS&DriverNOPCLK GeneratortshortLS&DriverVPVSBX,1VXclk1aclk1bclk2 for even cellsclk1 for odd cellsGate ctrl.signals Proposed Reconfigurable HV CSCR SC PFM
304、 loop regulate Vout Mode selected by ADC&CMP 2:1 SC operate at fSW/231.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits
305、Conference35 of 47Stage Outphasing:Achieves More V Steps At clock rising edge,CSCR SC pump charge from Vxto Vout At clock falling edge,2:1 SC pump charge from VSTOto VXVB1VoutVTMVXclk(fSW)clk1clk2VBNt.VT1.GND31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up t
306、o 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference36 of 47VB1VoutVTMVXclk(fSW)clk1clk2VBNt.VT1.GND4 steps per railStage Outphasing:Achieves More V Steps At clock rising edge,CSCR SC pump charge from V
307、xto Vout At clock falling edge,2:1 SC pump charge from VSTOto VX31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conf
308、erence37 of 47CFLYImplementation2.1mm2.2mmCell 13Cell 1 13Gate Control GeneratorM&N SelectionMIM CFLY for 2:1SW for CSCRSW for 2:1ALL CFLY for CSCREA&VCO 180nm BCD,4.6 mm2 2.35nF CFLYfor 2:1 11.2nF CFLYfor CSCRCFLY ImplementationMIMMOMMOSCFLYA for CSCR SCCFLYB for 2:1 SC31.4:A 91.25%Peak Power-Conve
309、rsion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference38 of 47Outline Background and Motivation Proposed System-Level Solution Proposed Recon
310、figurable Power StageHV CSCR SC ConverterSoft Shifting During M,N ReconfigurationCircuit Implementation Measurement Results Conclusions31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-S
311、cale IoT Applications 2025 IEEE International Solid-State Circuits Conference39 of 47Measurement Results2ms2VDischarging 16.3msM3N3Vout=1.8VVSTO=1.2VM2N4M1N5M0N6M3N3M2N4M1N5VSTO=8.6VM0N6M1N52:1 SC+CSCR SC(Step-down)CSCR SC(Step-down)(Step-up)VoutMSMSPout=9mW 146J burst energy with 22F MLCC from 8.6V
312、 to 1.2V31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference40 of 47Measurement Results2:1SC+CSCR(step-down)Vo
313、ut=1.8VCSCR(step-down)Vout=1.8VCSCR(step-up)Vout=1.8VIout(mA)VSTO=5V5560657075800.1110VSTO=6VVSTO=7VVSTO=8VVSTO=2.4V657075808590950.1110VSTO=3VVSTO=4.3VPeak PCE=91.25%VSTO=1.2V657075808590950.1110VSTO=1.5VVSTO=1.8VIout(mA)Iout(mA)Efficiency(%)Peak PCE at VSTO=2.4V,Vout=1.8V,Iout=5mA,fSW4MHz31.4:A 91
314、.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference41 of 47Measurement ResultsPower breakdown Pout=9mW,CSTO=22FMeasure
315、d extracted energy CSTO=22F10.4J Switching Loss12.2J Remain Energy4.65J Control Loss33.2J Conduction Loss146J Extracted Energy*Estimated from measurement70.9%5.9%5%16.1%2.3%Pout(mW)Energy(J)0501001502000510152025Measured Extracted EnergyTheoretical Extracted EnergyTotal Stored EnergyPeak EEE=70.9%70
316、.9%energy extracted;5.9%energy unused31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference42 of 47Measurement R
317、esultsVishay Tantalum Cap2.8mm4.3mm7.3mm220FEnergy Extraction Efficiency(%)Extracted Energy(J)010305070900.0010.010.1110100100010000JSSC21CSTO=50FTCAS-I20CSTO=7.5mF215JCSTO=220F5678JCSTO=22F146JASSCC23on-chip CSTOISSCC17on-chip CSTO35EEE27 40 31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive
318、Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference43 of 47X.WuISSCC17J.WuASSCC23D.CabelloTCAS-I20H.ChengJSSC21Technology(nm)180180180180Core Area(mm2)3.80.990.5821.6
319、9Conversion Ratio1347,LDO2,3,4On-chip Capacitance(nF)3.153.2NR2.2Vin(V)40.3250.50.250.420.450.9Vout(V)3.80.80.91.31.5peak(%)Pout(mW)NR79.30.025560.0024169.53Energy Storagecomponenton-chip capacitorson-chip capacitors7.5mF50F22F220FPeak EEE for Burst(%)Pout7090W78.690W1.983.6mW1.953mW70.99mW69.89mW*E
320、xtracted Energy(J)0.01750.00092150.61465679*NR:Not Reported18.61.891.259*Estimated with measured dataThis work1804.62CSCR13.6Measurement Results31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor
321、 for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference44 of 47X.WuISSCC17J.WuASSCC23D.CabelloTCAS-I20H.ChengJSSC21Technology(nm)180180180180Core Area(mm2)3.80.990.5821.69Conversion Ratio1347,LDO2,3,4On-chip Capacitance(nF)3.153.2NR2.2Vin(V)40.3250.50.250.420.450.9Vout
322、(V)3.80.80.91.31.5peak(%)Pout(mW)NR79.30.025560.0024169.53Energy Storagecomponenton-chip capacitorson-chip capacitors7.5mF50F22F220FPeak EEE for Burst(%)Pout7090W78.690W1.983.6mW1.953mW70.99mW69.89mW*Extracted Energy(J)0.01750.00092150.61465679*NR:Not Reported18.61.891.259*Estimated with measured da
323、taThis work1804.62CSCR13.6Measurement Results31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference45 of 47Outli
324、ne Background and Motivation Proposed System-Level Solution Proposed Reconfigurable Power StageHV CSCR SC ConverterSoft Shifting During M,N ReconfigurationCircuit Implementation Measurement Results Conclusions31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up
325、to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference46 of 47Conclusions Proposed HV storage scheme significantly improve both Estoredand Eavwith the same CSTO Proposed Reconfigurable HV CSCR SC improve
326、 the EEE to 70.9%with a single external CSTO This work extract 146J burst energy with 22F CSTOand 70.9%EEE,and more burst energy up to 5.68mJ is achieved with 220F CSTO Compared to prior work,corresponds to a 35 and 27improvement in EEE and burst energy delivery,respectively,while using a 34 reduction in CSTO31.4:A 91.25%Peak Power-Conversion Efficiency Capacitive Power Management IC Supporting up to 5.68mJ Burst Energy Delivery Using a Single External Capacitor for mm-Scale IoT Applications 2025 IEEE International Solid-State Circuits Conference47 of 47Thank you for your attention!