《eetop.cn_T3 - Fundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing.pdf》由會員分享,可在線閱讀,更多相關《eetop.cn_T3 - Fundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing.pdf(150頁珍藏版)》請在三個皮匠報告上搜索。
1、 2025 IEEE International Solid-State Circuits ConferenceFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum ComputingFundamentals of Cryo-CMOS Circuits and Systemsfor Quantum ComputingFabio Sebastiano(f.sebastianotudelft.nl)Delft University of TechnologyFebruary 16th,20251 of
2、82 2025 IEEE International Solid-State Circuits ConferenceOutline Introduction to quantum computing Why cryo-CMOS electronics?Cryo-CMOS device performance What can we use?Cryo-CMOS circuits for quantum processors What do we need to build?Alternative cryogenic technologies Future challenges and visio
3、n Wrap-upFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing2 of 82 2025 IEEE International Solid-State Circuits ConferenceOutline Introduction to quantum computing Why cryo-CMOS electronics?Cryo-CMOS device performance What can we use?Cryo-CMOS circuits for quantum
4、processors What do we need to build?Alternative cryogenic technologies Future challenges and vision Wrap-upFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing3 of 82 2025 IEEE International Solid-State Circuits ConferenceWhy quantum computers?Encryption/decryptionBig
5、 dataProtein foldingDrug synthesisDNA analysisMolecule simulationFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing4 of 82 2025 IEEE International Solid-State Circuits ConferenceFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum ComputingQuan
6、tumClassicalWhat is a quantum computer?Classical bits01GNDVDDQuantum bits(qubits)01=00+11SuperpositionExploit superposition and entanglement for computationInformation storageInformation processing but probabilistic outcome!5 of 82 2025 IEEE International Solid-State Circuits ConferenceQuantum algor
7、ithmRequire smart algorithm design(Grover,Shor,.)68 quantum algorithms are known https:/quantumalgorithmzoo.org/000001010011100101110111Prepare superpositionSmart processingRead-outFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing6 of 82 2025 IEEE International Sol
8、id-State Circuits Conference The Qubit01The Bloch sphere=00+11=cos2 0+sin2 1=1 0+0 1,=0=0 0+1 1,=Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing7 of 82 2025 IEEE International Solid-State Circuits ConferenceThe Qubit Physical implementationIn the absolute frame,t
9、he qubit rotates around the z-axis0 is the Larmor frequencyIn the rotating frame,the qubit is static01=0=001Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing=00+11=cos2 0+sin2 1zyx01zyx01zyx8 of 82 2025 IEEE International Solid-State Circuits ConferenceThe Qubit Ph
10、ysical implementationInjecting energy at 0 the qubit oscillates between 0 and 1In the rotating frame,the qubit rotates around the x-axis(or the y-axis)01=0=00+11=cos2 0+sin2 1Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing01zyx01zyx01zyx9 of 82 2025 IEEE Internat
11、ional Solid-State Circuits ConferenceOperating on a qubitFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing10 of 82 2025 IEEE International Solid-State Circuits ConferenceControlling the rotation angleAmplitude and duration determine the angle of rotationPhase deter
12、mines the axis of rotationFrequency must match the qubit Larmor frequencyPure electrical parameters determine the quantum behaviorFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing11 of 82 2025 IEEE International Solid-State Circuits ConferenceReading out the qubitF
13、abio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing01zyx0101zyx01zyxPulse duration sProbability of 0 12 of 82 2025 IEEE International Solid-State Circuits ConferenceReading out the qubitFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computi
14、ng01zyx0101zyx1x Rabi oscillationPulse duration sProbability of 0 12 of 82 2025 IEEE International Solid-State Circuits ConferenceA perfect qubit?What happens if the rotation is not perfect?E.g.,a pulse is longer than requiredError:=Fidelity F(between 0%and 100%)Measure how well the qubit matches th
15、e intended operationIncludes the effect of inaccuracy and noise in the controlQubits have an inherent fidelity limit!T+T01Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing01Finite relaxation time T1:qubit evolve from 1 to 0 Dephasing time T2:quantum phase fluctuati
16、ons 01Typical time scale:s ms(1 s)13 of 82 2025 IEEE International Solid-State Circuits ConferenceRequirements for a quantum computer(DiVincenzo criteria)Scalable qubits Long-coherence time Qubit initialization A“universal”set of quantum gates Single-qubit operations Two-qubit operations Qubit measu
17、rementFundamentals of Cryo-CMOS Circuits and Systems for Quantum ComputingFabio SebastianoDiVincenzo 200014 2025 IEEE International Solid-State Circuits ConferenceRequirements for a quantum computer(DiVincenzo criteria)Scalable qubits Long-coherence time Qubit initialization A“universal”set of quant
18、um gates Single-qubit operations Two-qubit operations Qubit measurementFundamentals of Cryo-CMOS Circuits and Systems for Quantum ComputingFabio Sebastiano Qubit platformsDiVincenzo 200014 2025 IEEE International Solid-State Circuits ConferenceFabio SebastianoCryogenic qubitsReal-life qubitsSupercon
19、ductingMarques 2022van der Sar 2021Philips 2022Maksymov 2021Spin qubits in semiconductorsSpin in diamondsIon traps01=00+1117see also this videoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing15 of 82 2025 IEEE International Solid-State Circuits ConferenceUseful Quantum Computers?
20、Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing1101001 k10 k100 k1 M10 M100 M199520052015202520352045#qubitsNuclei/photonsIon traps/atomsSuperconductingColor centerSemiconductor17 of 82 2025 IEEE International Solid-State Circuits ConferenceUseful Quantum Compute
21、rs?Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing1101001 k10 k100 k1 M10 M100 M199520052015202520352045#qubitsNuclei/photonsIon traps/atomsSuperconductingColor centerSemiconductorBut only if qubits are ideal!(fidelity=100%)17 of 82 2025 IEEE International Solid-
22、State Circuits ConferenceTarget Making up quality with quantityIdeal qubitDecoherence,gate errors,measurement errors,Noisy qubitNoisy qubitQuantum Error Correction codeOverwater 2022Logical error ratePhysical error rateBreak-even logical qubitphysical qubits1%physical error rate(F=99%)Fabio Sebastia
23、noFundamentals of Cryo-CMOS Circuits and Systems for Quantum ComputingNeed forF 99.9%18 of 82 2025 IEEE International Solid-State Circuits ConferenceHow many qubits?14,000 logical qubits How many physical qubits?Physical error rate=10-3 d=27Fidelity=99.9%1 logical qubit=2(d2+1)=1568 physical qubits
24、22 M physical qubits Data processing14,0001568=22 Mbit/cycleTcycle 22 Tbit/secFakkel 2024Battistel 2023Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing19 of 82 2025 IEEE International Solid-State Circuits ConferenceUseful Quantum Computers?Fabio SebastianoFundamen
25、tals of Cryo-CMOS Circuits and Systems for Quantum Computing1101001 k10 k100 k1 M10 M100 M199520052015202520352045#qubitsNuclei/photonsIon traps/atomsSuperconductingColor centerSemiconductorOverhead forQuantum Error Correction20 of 82 2025 IEEE International Solid-State Circuits ConferenceUseful Qua
26、ntum Computers?Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing1101001 k10 k100 k1 M10 M100 M199520052015202520352045#qubitsNuclei/photonsIon traps/atomsSuperconductingColor centerSemiconductorScaling up!Need for more and better qubits Engineering!Overhead forQuan
27、tum Error Correction20 of 82 2025 IEEE International Solid-State Circuits ConferenceA real-life quantum computerFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing21 of 82 2025 IEEE International Solid-State Circuits ConferenceA real-life quantum computerFabio Sebast
28、ianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing21 of 82 2025 IEEE International Solid-State Circuits ConferenceA real-life quantum computerQuantum processor(1 K)Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing21 of 82 2025 IEEE Internation
29、al Solid-State Circuits ConferenceA real-life quantum computerQuantum processor(1 K)Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing21 of 82 2025 IEEE International Solid-State Circuits ConferenceA real-life quantum computerQuantum processor(1 K)Electronic interfa
30、ceFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing21 of 82 2025 IEEE International Solid-State Circuits ConferenceA real-life quantum computerQuantum processor(1 K)Electronic interfaceSourceFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum
31、 Computing21 of 82 2025 IEEE International Solid-State Circuits ConferenceA real-life quantum computerQuantum processor(1 K)Electronic interfaceSourceHow to scale up?Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing21 of 82 2025 IEEE International Solid-State Circu
32、its Conference?Todays Quantum Computers(and tomorrow?)The transistorThe Integrated Circuit1945 ENIAC tube computer2019 Googles quantum computersource2025 Silicon-based computersFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing22 of 82 2025 IEEE International Solid-
33、State Circuits Conference?Todays Quantum Computers(and tomorrow?)The transistorThe Integrated Circuit1945 ENIAC tube computer2019 Googles quantum computersourceChallenges in scaling upElectronic interfaceLimited performance/flexibility of GP instrumentsComplexity with 1M+qubits Tailor-made electroni
34、csWiringHeat load(?),cost(?),propagation delay(?/!)Size(!),reliability(!)2025 Silicon-based computersFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing22 of 82 2025 IEEE International Solid-State Circuits ConferenceToward a large-scale quantum computerCryogenic and
35、integrated electronic interface for large-scale quantum computers Quantum processorQuantum processorT=300 KT 1 K T=4 KElectronic interfacebulky equipmentElectronic interfaceintegratedState of the artFuture quantum computerPatra 2018Anders 2023Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Sy
36、stems for Quantum Computing23 of 82 2025 IEEE International Solid-State Circuits ConferenceChallengesPerformance Noise,accuracy,speed How much?Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing24 of 82 2025 IEEE International Solid-State Circuits ConferenceChallenge
37、sPerformancePower dissipation300 K50 K4 K20 mKFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing25 of 82 2025 IEEE International Solid-State Circuits ConferenceChallengesPerformancePower dissipation 1 W for 1000 qubits?1 mW/qubit 300 K50 K4 K20 mKCoolingpower 1 mW 1
38、 WFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing25 of 82 2025 IEEE International Solid-State Circuits ConferenceChallengesPerformancePower dissipationCryogenic technology Superconducting devicesSemiconductorsMinimumoperating temperature Si BJT100 KGe BJT20 KSiGe
39、 HBT 1 KIII-V HEMT 1 KCMOS30 mK or below?Most used todayVLSIVery Large Scale IntegrationFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing26 of 82 2025 IEEE International Solid-State Circuits ConferenceChallengesPerformancePower dissipationCryogenic technology Super
40、conducting devicesSemiconductorsMinimumoperating temperature Si BJT100 KGe BJT20 KSiGe HBT 1 KIII-V HEMT 14 bitsFor negligible error|f|100 kHz01Flux biasYoo 2023IBIASFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing144 of 82 2025 IEEE International Solid-State Circ
41、uits ConferenceSuperconducting qubits Flux bias Temporarily changing the flux bias01Flux biasIPULSEIBIAS1IBIAS2IBIAS2Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum ComputingYoo 202345 of 82 2025 IEEE International Solid-State Circuits ConferenceSuperconducting qubits Flux
42、 bias Temporarily changing the flux bias The Larmor frequency change01Flux biasIPULSEIBIAS1IBIAS2IBIAS2Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum ComputingYoo 202345 of 82 2025 IEEE International Solid-State Circuits ConferenceSuperconducting qubits Flux bias Temporar
43、ily changing the flux bias The Larmor frequency change Equivalent to Z-rotation in rotating frame Single-qubit gate(for Z)01Flux bias01IPULSEIBIAS1IBIAS2IBIAS2xyz=Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum ComputingYoo 2023245 of 82 2025 IEEE International Solid-State
44、 Circuits ConferenceQubit BQubit ASuperconducting qubits Flux bias Bringing coupled qubits to same frequency Quantum interaction(entanglement)Two-qubit gate Fast-settling pulse but high accuracy?01Flux biasCcoupleIAIPULSEIBIAIB 5 500 ns Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems
45、for Quantum ComputingYoo 2023346 of 82 2025 IEEE International Solid-State Circuits ConferenceSuperconducting qubits Flux bias Typical solution:fast switching between slow accurate DACs14 bits,ns switching/settlingTypical DAC architecture:current steeringDAC1DAC2Fabio SebastianoFundamentals of Cryo-
46、CMOS Circuits and Systems for Quantum ComputingIBIAIB 5 500 ns 47 of 82 2025 IEEE International Solid-State Circuits Conference4 K 100 mKSuperconducting qubits Flux bias Typical solution:fast switching between slow accurate DACs14 bits,ns switching/settlingTypical DAC architecture:current steering B
47、eware:Cooling limitation cryo-CMOS chip at 4 K(10 cm 1 m from qubits)Additional filtering(or bias-T)can be insertedPulse shape may be distorted Extensive calibration(with qubits)Main specs for DAC:resolution,noise,no missing codesDAC1DAC2Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems
48、 for Quantum ComputingIBIAIB 5 500 ns 47 of 82 2025 IEEE International Solid-State Circuits ConferenceFabio SebastianoSuperconducting qubits Single-qubit gatesFundamentals of Cryo-CMOS Circuits and Systems for Quantum ComputingQubitInputportDuration and amplitudedefine qubit rotationLarmor frequency
49、Exciting the wrong transition lower fidelity!0101212What about the spectrum?Frequency01120.2GHz248 of 82 2025 IEEE International Solid-State Circuits ConferenceFabio SebastianoSuperconducting qubits Single-qubit gatesFundamentals of Cryo-CMOS Circuits and Systems for Quantum ComputingQubitInputportD
50、uration and amplitudedefine qubit rotationLarmor frequencyFrequency01120.2GHz2Solution:Use qubits with further 12See fluxonium Le Guevel 2024Adapt qubits to electronics49 of 82 2025 IEEE International Solid-State Circuits ConferenceFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Q
51、uantum ComputingSuperconducting qubits Single-qubit gates2Frequency01120.2GHzRaised cosineDACRaised cosineSolution:Better pulse shapingQubitInputport50 of 82 2025 IEEE International Solid-State Circuits ConferenceSolution:I/Q modulatorDerivative Removal by Adiabatic Gate(DRAG)Typically aim for 50dB
52、attenuationFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum ComputingSuperconducting qubits Single-qubit gates2Frequency01120.2GHzRaised cosineDRAGDACDAC90Raised cosineDerivative ofraised cosineX(f)jX(f)(1-)X(f)QubitInputport51 of 82 2025 IEEE International Solid-State Circ
53、uits ConferenceSuperconducting qubits Single-qubit gatesI/Q digital transmitter to control pulse amplitude,duration and phaseNumerically Controlled Oscillator(NCO)tracks qubit phaseQubit NQubit 2Qubit 1DACDAC90I/Q modulatorPhaseAmpl.I/Q modulatorI/Q modulatorNNQubit NQubit 2Qubit 2NCOsSee also:here
54、and herevan Dijk TCAS 2020Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing252 of 82 2025 IEEE International Solid-State Circuits Conference4 K 44dB for fidelity 99.99%No TDMA nor TDMA typically employedSeveral techniques to improve power/qubit down to 4 mW/qubitCh
55、akraborty 2022 Yoo 2023 Kang 2023 Guo 2024Qubit NQubit 2Qubit 1DACDAC90I/Q modulatorPhaseAmpl.I/Q modulatorI/Q modulatorNNQubit NQubit 2Qubit 2NCOsSFDRfSee also:here and herevan Dijk TCAS 2020Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing252 of 82Spectrum 2025 I
56、EEE International Solid-State Circuits ConferenceSuperconducting qubits Readout Qubit state mapped into state-dependent S21(or S11)Resonator to protect qubitOnly little power injected(-125dBm)ResonatorQubitTone generationI/QreceiverFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Q
57、uantum Computing453 of 82 2025 IEEE International Solid-State Circuits ConferenceSuperconducting qubits Readout Qubit state mapped into state-dependent S21(or S11)Resonator to protect qubitOnly little power injected(-125dBm)Ultra-Low-Noise Amplifier(ULNA)Josephson Parametric Amplifier(JPA)Compatible
58、 with qubit fabricationTnoise=hf/2kB 0.1K 6GHzLimited gain(20dB)ULNAResonatorQubitTone generationI/QreceiverFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing453 of 82 2025 IEEE International Solid-State Circuits ConferenceSuperconducting qubits Readout Qubit state
59、mapped into state-dependent S21(or S11)Resonator to protect qubitOnly little power injected(-125dBm)Ultra-Low-Noise Amplifier(ULNA)Josephson Parametric Amplifier(JPA)Compatible with qubit fabricationTnoise=hf/2kB 0.1K 6GHzLimited gain(20dB)Low-Noise Amplifier(LNA)Typically III-V semiconductor(HEMT)R
60、esearch on silicon-based(CMOS,SiGe)Kwende 2024 Zou 2024 Ex.readout ICs Guo 2024 Kang 2022 Peng 2022LNAULNAResonatorQubitTone generationI/QreceiverFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing453 of 82 2025 IEEE International Solid-State Circuits ConferenceSuper
61、conducting qubits Readout Qubit state mapped into state-dependent S21(or S11)Resonator to protect qubitOnly little power injected(-125dBm)Ultra-Low-Noise Amplifier(ULNA)Josephson Parametric Amplifier(JPA)Compatible with qubit fabricationTnoise=hf/2kB 0.1K 6GHzLimited gain(20dB)Low-Noise Amplifier(LN
62、A)Typically III-V semiconductor(HEMT)Research on silicon-based(CMOS,SiGe)Kwende 2024 Zou 2024 Ex.readout ICs Guo 2024 Kang 2022 Peng 2022 100 mK4 KLNAULNAResonatorQubitTone generationI/QreceiverFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing453 of 82 2025 IEEE In
63、ternational Solid-State Circuits ConferenceSuperconducting qubits Summary Operates at mK temperatures Basically microwave(6-8 GHz)objectsMicrowave control with spectral purityLow-noise microwave readoutSome baseband control requiredNeed for 50-lines/matching Limited integrationmK qubits(and ULNAs)+4
64、-K electronicsWiring bottleneck at 1000 wires/qubitsScaling beyond asks for multi-core(multi-fridge?)architectures Most popular targets for cryo-CMOS ICsLargest quantum processors availableFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing54 of 82 2025 IEEE Internat
65、ional Solid-State Circuits ConferenceSuperconducting qubits Summary Operates at mK temperatures Basically microwave(6-8 GHz)objectsMicrowave control with spectral purityLow-noise microwave readoutSome baseband control requiredNeed for 50-lines/matching Limited integrationmK qubits(and ULNAs)+4-K ele
66、ctronicsWiring bottleneck at 1000 wires/qubitsScaling beyond asks for multi-core(multi-fridge?)architectures Most popular targets for cryo-CMOS ICsLargest quantum processors availableOther alternatives?Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing54 of 82 2025
67、IEEE International Solid-State Circuits ConferenceSioxidegateSiGeSiGeGeSiGeSiGeSiHorizontal confinementSpin qubits in semiconductorsIsolate single electron/holeVertical confinement:heterostructure,MOS,FinFET,FD-SOIHorizontal confinement:electrical potential by gates/electrodesQubit encoded in spin s
68、tateT 100 mK but compatible with advanced semiconductor manufacturingE.g.300mm wafers with all-optical lithography and fully industrial processing Zwerver 2022oxidegateoxidegateVertical confinementEnergy2D electron gas2D hole gasBMagnetic fieldZeemansplitting10Quantumdots01=01=01=20 GHz 1 GHzFabio S
69、ebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing55 of 82 2025 IEEE International Solid-State Circuits ConferenceSpin qubits in semiconductors Biasing Accurate voltages for electrode biasingStable,accurate 1-10 VTechnology-dependent range(3 V)Voltage sharing limited by qu
70、bit uniformityComplex bring-up algorithmStandard approachPauka 2021 Vliex 2020Schreckenberg 2023 Subramanian 2024Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing156 of 82 2025 IEEE International Solid-State Circuits ConferenceSpin qubits in semiconductors Biasing
71、Accurate voltages for electrode biasingStable,accurate 1-10 VTechnology-dependent range(3 V)Voltage sharing limited by qubit uniformityComplex bring-up algorithm Sample&Hold(S&H)+MUX DACStandard approachMore scalablePauka 2021 Vliex 2020Schreckenberg 2023 Subramanian 2024Fabio SebastianoFundamentals
72、 of Cryo-CMOS Circuits and Systems for Quantum Computing156 of 82 2025 IEEE International Solid-State Circuits ConferenceSpin qubits in semiconductors Biasing Accurate voltages for electrode biasingStable,accurate 1-10 VTechnology-dependent range(3 V)Voltage sharing limited by qubit uniformityComple
73、x bring-up algorithm Sample&Hold(S&H)+MUX DACLeakage is main limitation(1-100 V/s)Refresh rate(1 Hz)Power budget mK(100 W)Moderate output rate(100 kHz)Good efficiency for 10+k electrodes (1nW/chan.)but beware of parasiticsArea limited by caps(1-10 pF for kT/C noise)Opportunity for smart mux strategi
74、esMore scalablePauka 2021 Vliex 2020Schreckenberg 2023 Subramanian 2024Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing156 of 82 2025 IEEE International Solid-State Circuits ConferenceSpin qubits in semiconductors Single-qubit gates AC magnetic field at Larmor fre
75、quencyESR(Electron Spin Resonance)Use current through a(50-)lineFDMA using magnetic gradient AC voltage and magnetic gradientEDSR(Electric Dipole Spin Resonance)Need to drive an“open”Cryo-CMOS driverSimilar to superconducting drivers van Dijk 2020 Park 2021No close transition freq.easier spectral pu
76、rityBut driving an“open”Going towards lower frequenciesIAC01=01=01=20 GHz 1 GHzBBBBVACFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing257 of 82 2025 IEEE International Solid-State Circuits ConferenceSpin qubits in semiconductors Two-qubit gatesEnergyFabio Sebastia
77、noFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing358 of 82 2025 IEEE International Solid-State Circuits ConferenceSpin qubits in semiconductors Two-qubit gates Tune barriers for entanglement Pulse duration/amplitude define gateEnergyBias TeeDC biasFabio SebastianoFundamentals of
78、 Cryo-CMOS Circuits and Systems for Quantum Computing358 of 82 2025 IEEE International Solid-State Circuits ConferenceSpin qubits in semiconductors Two-qubit gates Tune barriers for entanglement Pulse duration/amplitude define gate Fast switch of 2 slow DACs Resolution:11bits,1ns Park 2021 Extensive
79、 calibration Linearity is relaxed Need crosstalk compensationEnergyBias TeeDC biasDAC1DAC2Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing358 of 82 2025 IEEE International Solid-State Circuits ConferenceSpin qubits in semiconductors Two-qubit gates Tune barriers f
80、or entanglement Pulse duration/amplitude define gate Fast switch of 2 slow DACs Resolution:11bits,1ns Park 2021 Extensive calibration Linearity is relaxed Need crosstalk compensation Bias Tee integrated with bias DAC Alternative:“slow”pulsing Rimbach-Russ 2023 Beware:driving an“open”EnergyBias TeeDC
81、 biasBias TeeDAC1DAC2Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing358 of 82 2025 IEEE International Solid-State Circuits ConferenceSpin qubits in semiconductors Read-outVgatePrabowo ISSCC 2024Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Qu
82、antum Computing459 of 82 2025 IEEE International Solid-State Circuits ConferenceSpin qubits in semiconductors Read-outSpin-to-charge conversionTo be measuredreferenceVgatePrabowo ISSCC 2024Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing459 of 82 2025 IEEE Interna
83、tional Solid-State Circuits ConferenceSpin qubits in semiconductors Read-outSpin-to-charge conversionTo be measuredreferenceVgatePrabowo ISSCC 2024Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing459 of 82 2025 IEEE International Solid-State Circuits ConferenceSpin
84、 qubits in semiconductors Read-outSpin-to-charge conversionTo be measuredreferenceVgatePrabowo ISSCC 2024Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing459 of 82 2025 IEEE International Solid-State Circuits ConferenceSpin qubits in semiconductors Read-outSpin-to-
85、charge conversionTo be measuredreferenceVgatePrabowo ISSCC 2024Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing459 of 82 2025 IEEE International Solid-State Circuits ConferenceSpin qubits in semiconductors Read-outSpin-to-charge conversionSingle Electron Transisto
86、r(SET)Very sensitive electrometerTo be measuredreferenceVgateVgateISETPrabowo ISSCC 2024Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing459 of 82 2025 IEEE International Solid-State Circuits ConferenceLNAULNAI/QreceiverTone gen.Spin qubits in semiconductors Read-o
87、utSpin-to-charge conversionSingle Electron Transistor(SET)Very sensitive electrometerRemote sensing by reflectometry50-match with LC networkPIN-100 dBm not to alter qubitsSET resistance modulation 1%Low noise required(TN=1 10 K)AdvantagesFDMAFast readoutNo effect of 1/f noise of RxTo be measuredrefe
88、renceVgateVgateISETCpLPrabowo ISSCC 2024PINFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing459 of 82 2025 IEEE International Solid-State Circuits ConferenceLNAULNAI/QreceiverTone gen.Spin qubits in semiconductors Read-outSpin-to-charge conversionSingle Electron Tr
89、ansistor(SET)Very sensitive electrometerRemote sensing by reflectometry50-match with LC networkPIN 10k q-dots!Alternatives?CpLPrabowo TQE 2024PINFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing4I/QreceiverTone gen.60 of 82 2025 IEEE International Solid-State Circu
90、its ConferenceSpin qubits in semiconductors Read-out Baseband readout of SETISET 300 pANoise/speed limited by CpLimit injected disturbancesVgateVgateISETCurry 2019 Le Guevel 2020 Fuketa 2023 Castriotta 2023 Schmidt 2024ISET-+CpCintFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Qu
91、antum Computing461 of 82 2025 IEEE International Solid-State Circuits ConferenceSpin qubits in semiconductors Read-out Baseband readout of SETISET 300 pANoise/speed limited by CpLimit injected disturbances AdvantagesSmall footprintPotentially 99.9%(T=500 ns,P=1 mW)Appealing when co-integratedVgateVg
92、ateISETCurry 2019 Le Guevel 2020 Fuketa 2023 Castriotta 2023 Schmidt 2024ISET-+CpCintFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing461 of 82 2025 IEEE International Solid-State Circuits ConferenceSpin qubit in semiconductors Summary Great prospect for scalabilit
93、yCompatible with microelectronic fabricationVery small footprintOperates at mK temperatures but extending to 1 KBut no convincing proof of(non-trivial)2D arrayBut limits in qubit uniformityBut challenging to fan out to electronicsBut still need microwave excitation and passives(e.g.,L)Cryo-CMOS inte
94、rfaceTowards pure baseband control(no microwaves):Adapt qubits to electronicsBiasing/baseband pulsing:Power/area efficiency?Read-out:RF or baseband?Achieving the noise levels?Co-integration:fabrication?Crosstalk?100 nmFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computi
95、ng62 of 82 2025 IEEE International Solid-State Circuits ConferenceSpin qubit in semiconductors Summary Great prospect for scalabilityCompatible with microelectronic fabricationVery small footprintOperates at mK temperatures but extending to 1 KBut no convincing proof of(non-trivial)2D arrayBut limit
96、s in qubit uniformityBut challenging to fan out to electronicsBut still need microwave excitation and passives(e.g.,L)Cryo-CMOS interfaceTowards pure baseband control(no microwaves):Adapt qubits to electronicsBiasing/baseband pulsing:Power/area efficiency?Read-out:RF or baseband?Achieving the noise
97、levels?Co-integration:fabrication?Crosstalk?Other alternatives?100 nmFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing62 of 82 2025 IEEE International Solid-State Circuits ConferenceSpin qubits in color centersNV(or SnV)centers in diamondBut also Si,SiC,High fideli
98、tyHigh temperature(1 K)Remote entanglement(1 km)Enthoven 2024van der Sar 2021Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing63 of 82 2025 IEEE International Solid-State Circuits ConferenceSpin qubits in color centersNV(or SnV)centers in diamondBut also Si,SiC,Hig
99、h fidelityHigh temperature(1 K)Remote entanglement(1 km)Enthoven 2024van der Sar 2021Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing63 of 82 2025 IEEE International Solid-State Circuits ConferenceSpin qubits in color centersNV(or SnV)centers in diamondBut also Si
100、,SiC,High fidelityHigh temperature(1 K)Remote entanglement(1 km)Enthoven 2024van der Sar 2021IACFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing63 of 82 2025 IEEE International Solid-State Circuits ConferenceSpin qubits in color centersNV(or SnV)centers in diamond
101、But also Si,SiC,High fidelityHigh temperature(1 K)Remote entanglement(1 km)Electrical and optical controlHybrid co-integration Poor coil-qubit coupling high currentsEnthoven 2024van der Sar 2021Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing63 of 82 2025 IEEE Int
102、ernational Solid-State Circuits ConferenceSpin qubits in color centers Biasing Large unit pitch(1 mm)plenty of space for electronics But inhomogeneous field must be corrected locallyFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum ComputingEnthoven 2024IAC164 of 82 2025 IEE
103、E International Solid-State Circuits ConferenceSpin qubits in color centers Biasing Large unit pitch(1 mm)plenty of space for electronics But inhomogeneous field must be corrected locally Typical specificationsLarge range(10 mA),fine resolution(10 mApk 2.7 GHz)Focus on high-efficient driverIACExampl
104、e:Class D-E driver Fakkel 2024Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing265 of 82 2025 IEEE International Solid-State Circuits ConferenceSpin qubits in color centersTwo-qubit gates and read-out ReadoutLaser excitation spin-dependent photon emission single-ph
105、oton detection Two-qubit gatesLaser excitation qubit A emits entangled photon ALaser excitation qubit B emits entangled photon BMeasure photon A and B photons are entangled qubit A and B are entangled RequireExternal laserRouting of light optical switchesSingle-photon detection,e.g.,SNSPD(Supercondu
106、cting Nanowire Single-Photon Detectors)Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing3466 of 82 2025 IEEE International Solid-State Circuits ConferenceSpin qubits in color centers Summary Performances are greatHigh temperature,high fidelity Remote entanglement r
107、elieve fan out issuesBut how to fabricate them with high yield?Very complex integration schemeDiamondsSuperconductive coilsIntegrated photonicsMEMS optical switchesSNSPDsCryo-CMOSFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum ComputingIshihara,IEDM 202167 of 82 2025 IEEE
108、International Solid-State Circuits ConferenceT=20 mKT=4 KT=300 KReferencesADCDACT sensorN-qubitQuantumProcessorADCDigital controlMUXDACDEMUXThe Cryo-CMOS interfaceFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum ComputingDigital control68 of 82 2025 IEEE International Solid
109、-State Circuits ConferenceT=20 mKT=4 KT=300 KReferencesADCDACT sensorN-qubitQuantumProcessorADCDigital controlMUXDACDEMUXThe Cryo-CMOS interface“Support”electronic,e.g.,:Voltage references van Staveren 2024 Frequency generator Gong 2023Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems f
110、or Quantum ComputingDigital control68 of 82 2025 IEEE International Solid-State Circuits ConferenceT=20 mKT=4 KT=300 KReferencesADCDACT sensorN-qubitQuantumProcessorADCDigital controlMUXDACDEMUXThe Cryo-CMOS interfaceTarget applications:Algorithm flow control Readout/control DSP Quantum Error Correc
111、tion(QEC)QEC decoders with real-time Tbps data!Overwater 2022,Battistel 2023“Support”electronic,e.g.,:Voltage references van Staveren 2024 Frequency generator Gong 2023Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing68 of 82 2025 IEEE International Solid-State Cir
112、cuits ConferenceT=20 mKT=4 KT=300 KReferencesADCDACT sensorN-qubitQuantumProcessorADCDigital controlMUXDACDEMUXThe Cryo-CMOS interfaceTarget applications:Algorithm flow control Readout/control DSP Quantum Error Correction(QEC)QEC decoders with real-time Tbps data!Overwater 2022,Battistel 2023“Suppor
113、t”electronic,e.g.,:Voltage references van Staveren 2024 Frequency generator Gong 2023Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing568 of 82 2025 IEEE International Solid-State Circuits ConferenceCryo-CMOS digital speedHomulle 2019Mobility enhancementLimited by
114、higher Vth300 K4 KNanometer CMOS Low supply Limited by VthMature CMOSDominated by mobility increaseFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing69 of 82 2025 IEEE International Solid-State Circuits ConferenceCryo-CMOS digital speedHomulle 2019Mobility enhanceme
115、ntLimited by higher Vth300 K4 KNanometer CMOS Low supply Limited by VthMature CMOSDominated by mobility increaseLow Vth using cryo-aware FBB Overwater 2024 or FD-SOI Bohuslavskyi 2018Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing69 of 82 2025 IEEE International
116、Solid-State Circuits Conference and the memories?300 K4 K300 K4 KHeadroomlimitationsLow latencyLow leakage better retention?Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing70 of 82 2025 IEEE International Solid-State Circuits Conference and the memories?300 K4 K30
117、0 K4 KHeadroomlimitationsLow latencyLow leakage better retention?Best memory design for cryo-CMOS?Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing70 of 82 2025 IEEE International Solid-State Circuits ConferenceCryo-CMOS memoriesLess leakageMore speedLess leakageMo
118、re speedDynamic memories(2T DRAM)Damsteegt 2024Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum ComputingStatic memories(6T SRAM)No leakage floor Power scales with frequency Lower refresh power71 of 82 2025 IEEE International Solid-State Circuits ConferenceCryo-CMOS memorie
119、sLess leakageMore speedLess leakageMore speedDynamic memories(2T DRAM)Damsteegt 2024Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum ComputingStatic memories(6T SRAM)No leakage floor Power scales with frequency Lower refresh powerTrade-offs are different than at 300 K71 of
120、82 2025 IEEE International Solid-State Circuits ConferenceOutline Introduction to quantum computing Why cryo-CMOS electronics?Cryo-CMOS device performance What can we use?Cryo-CMOS circuits for quantum processors What do we need to build?Alternative cryogenic technologies Future challenges and visio
121、n Wrap-upFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing72 of 82 2025 IEEE International Solid-State Circuits ConferenceAlternative cryogenic technologies FD-SOI:Standard CMOS but bulk isolated by buried oxideGood platform for spin qubitsLow leakage current,bette
122、r matchingBack-gate terminal Tunability of threshold voltage SiGe BiCMOS:Low-temperature bipolarsLow noise+High speedBut less advanced CMOS processE.g.,VCOs and LNAs for transmons and SET readoutFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing73 of 82 2025 IEEE In
123、ternational Solid-State Circuits ConferenceAlternative cryogenic technologies FD-SOI:Standard CMOS but bulk isolated by buried oxideGood platform for spin qubitsLow leakage current,better matchingBack-gate terminal Tunability of threshold voltage SiGe BiCMOS:Low-temperature bipolarsLow noise+High sp
124、eedBut less advanced CMOS processE.g.,VCOs and LNAs for transmons and SET readout Superconducting electronicsUse JJ-based electronics for control and readout Mukhanov 2019Extremely low powerBut VLSI?Complexity?Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing73 of
125、82 2025 IEEE International Solid-State Circuits ConferenceOutline Introduction to quantum computing Why cryo-CMOS electronics?Cryo-CMOS device performance What can we use?Cryo-CMOS circuits for quantum processors What do we need to build?Alternative cryogenic technologies Future challenges and visio
126、n Wrap-upFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing74 of 82 2025 IEEE International Solid-State Circuits ConferenceTowards a scalable semiconductor QCFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing75 of 82 2025 IEEE Inter
127、national Solid-State Circuits ConferenceT=20 mKT=4 KTowards a scalable semiconductor QCFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing75 of 82 2025 IEEE International Solid-State Circuits ConferenceTowards a scalable semiconductor QCFabio SebastianoFundamentals o
128、f Cryo-CMOS Circuits and Systems for Quantum ComputingT=1 K?Vandersypen et al.,NPJ 2017Opportunities High-temperature operation W-free control Baseband readoutChallenges Small/low-noise readout Low-power pulsing Minimize electrical crosstalk Co-integration QEC decoding75 of 82 2025 IEEE Internationa
129、l Solid-State Circuits Conference and other platforms?Superconducting qubits Towards a 2-chip solution:mK QPU+4-K CMOS Keep(50-)microwave design Advanced packaging:QPU+“quantum”electronicsDas 2018Rosemberg 2020Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing76 of
130、82 2025 IEEE International Solid-State Circuits Conference and other platforms?Color-center qubitsHybrid co-integration Photonic ICs?Complex system optimizationMany functionalities to be proven/explored Quantum computers based on ion traps“Mature”quantum technologyRecent target for cryo-CMOSFabio Se
131、bastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing77 of 82 2025 IEEE International Solid-State Circuits Conference and other platforms?Color-center qubitsHybrid co-integration Photonic ICs?Complex system optimizationMany functionalities to be proven/explored Quantum compute
132、rs based on ion traps“Mature”quantum technologyRecent target for cryo-CMOSWho will survive the quantum winter?Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing77 of 82 2025 IEEE International Solid-State Circuits ConferenceThe future of Cryo-CMOS in Quantum Better
133、EDA support Models,PDKs,quantum/classical co-simulations An optimized CMOS technology for cryo?Likely converging to standard advanced CMOS Co-integration with qubits Thermal management Advanced power management?Upcoming trend with larger voltages/currents Reliability and robustness?Fabio SebastianoF
134、undamentals of Cryo-CMOS Circuits and Systems for Quantum Computing78 of 82 2025 IEEE International Solid-State Circuits ConferenceOutline Introduction to quantum computing Why cryo-CMOS electronics?Cryo-CMOS device performance What can we use?Cryo-CMOS circuits for quantum processors What do we nee
135、d to build?Alternative cryogenic technologies Future challenges and vision Wrap-upFabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing79 of 82 2025 IEEE International Solid-State Circuits ConferenceWrap-up(1/2)Quantum computers have a disruptive potentialbut several t
136、echnological(scaling)challenges must be addressedNot(yet)a winning qubit platformRequired functionalities and specifications are in flux Cryo-CMOS addresses the cryo/RT wiring bottleneck(one of the QC challenges)What is asked of cryo-CMOS electronics?Operate on qubits keeping high fidelity(99.9%-99.
137、99%)Not necessarily new circuits but optimize for efficiency(minimum power for given performance)and low footprintMain gain in system architecture:understand the qubit!Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing80 of 82 2025 IEEE International Solid-State Cir
138、cuits ConferenceWrap-up(2/3)Design with a“new”technologyDevice performances are different(better and worse than RT)Poor device modeling/simulation limits design effectiveness/reliabilitySeveral(but not all)functionalities have been demonstrated Design for different target qubits(and the winner is)Su
139、perconducting qubits(most popular systems today with largest scale)Perfect target for microwave engineers(due to 50-)interfaceBut qubits at mK and electronics at 4 K:limited integration/scalability?Semiconductor qubitsExploit(possible)co-integration with CMOSMoving towards baseband controlOthers:Dif
140、ferent pros/consNew requirements for electronics(high voltages/currents)Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing81 of 82 2025 IEEE International Solid-State Circuits ConferenceWrap-up(3/3)On-going research Understand and model cryo-CMOS device physics bett
141、er PDK/EDA Optimization of circuit(power/area)and system(qubits+electronics)Qubit/electronics co-integration(chip?package?)Adapt qubits to the electronics!Cryo-CMOS as enabler of large-scale QCs but space(and need!)for innovation and research!Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Sy
142、stems for Quantum Computing82 of 82 2025 IEEE International Solid-State Circuits ConferencePapers to See This Year13.3:cryo-BiCMOS controller for ion-trap quantum computer13.4:cryo-CMOS high-precision DAC to bias semiconductor quantum dots13.5:cryo-CMOS readout for semiconductor spin qubitsFabio Seb
143、astianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing83 of 82 2025 IEEE International Solid-State Circuits ConferenceReferencesD.P.DiVincenzo,The Physical Implementation of Quantum Computation,Fortschritte der Physik:Progress of Physics,Oct 2000.Also here:arXiv:quant-ph/0002077
144、R.W.J.Overwater,M.Babaie and F.Sebastiano,Neural-Network Decoders for Quantum Error Correction Using Surface Codes:A Space Exploration of the Hardware Cost-Performance Tradeoffs,in IEEE Transactions on Quantum Engineering,vol.3,pp.1-19,2022,Art no.3101719,doi:10.1109/TQE.2022.3174017.N.Fakkel,M.Mort
145、azavi,R.W.J.Overwater,F.Sebastiano and M.Babaie,A Cryo-CMOS DAC-Based 40-Gb/s PAM4 Wireline Transmitter for Quantum Computing,in IEEE Journal of Solid-State Circuits,vol.59,no.5,pp.1433-1446,May 2024,doi:10.1109/JSSC.2024.3364968.F.Battistel,et al.,Real-time decoding for fault-tolerant quantum compu
146、ting:progress,challenges and outlook,Nano Futures,vol.7,Aug.2023C.Gidney,and M.Eker,How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits,Quantum,vol.5,p.433,Apr.2021.B.Patra et al.,Cryo-CMOS Circuits and Systems for Quantum Computing Applications,in IEEE Journal of Solid-Stat
147、e Circuits,vol.53,no.1,pp.309-321,Jan.2018,doi:10.1109/JSSC.2017.2737549.J.Anders et al.,CMOS Integrated Circuits for the Quantum Information Sciences,in IEEE Transactions on Quantum Engineering,vol.4,pp.1-30,2023,Art no.5100230,doi:10.1109/TQE.2023.3290593.B.Patra,M.Mehrpoo,A.Ruffino,F.Sebastiano,E
148、.Charbon and M.Babaie,Characterization and Analysis of On-Chip Microwave Passive Components at Cryogenic Temperatures,in IEEE Journal of the Electron Devices Society,vol.8,pp.448-456,2020,doi:10.1109/JEDS.2020.2986722H.Bohuslavskyi et al.,Cryogenic Characterization of 28-nm FD-SOI Ring Oscillators W
149、ith Energy Efficiency Optimization,in IEEE Transactions on Electron Devices,vol.65,no.9,pp.3682-3688,Sept.2018,doi:10.1109/TED.2018.2859636.R.W.J.Overwater,M.Babaie and F.Sebastiano,Cryogenic-Aware Forward Body Biasing in Bulk CMOS,in IEEE Electron Device Letters,vol.45,no.2,pp.152-155,Feb.2024,doi:
150、10.1109/LED.2023.3337441.Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing84 of 82 2025 IEEE International Solid-State Circuits ConferenceReferencesR.M.Incandela,L.Song,H.Homulle,E.Charbon,A.Vladimirescu and F.Sebastiano,Characterization and Compact Modeling of Nan
151、ometer CMOS Transistors at Deep-Cryogenic Temperatures,in IEEE Journal of the Electron Devices Society,vol.6,pp.996-1006,2018,doi:10.1109/JEDS.2018.2821763.P.A.T Hart,M.Babaie,E.Charbon,A.Vladimirescu and F.Sebastiano,Characterization and Modeling of Mismatch in Cryo-CMOS,in IEEE Journal of the Elec
152、tron Devices Society,vol.8,pp.263-273,2020,doi:10.1109/JEDS.2020.2976546.P.A.T Hart,M.Babaie,E.Charbon,A.Vladimirescu and F.Sebastiano,Subthreshold Mismatch in Nanometer CMOS at Cryogenic Temperatures,in IEEE Journal of the Electron Devices Society,vol.8,pp.797-806,2020,doi:10.1109/JEDS.2020.2988730
153、.E.Catapano et al.,Cryogenic Temperature Effects on 16nm FinFet Performance and Mismatch,2024 IEEE European Solid-State Electronics Research Conference(ESSERC),Bruges,Belgium,2024,pp.341-344,doi:10.1109/ESSERC62670.2024.10719438.R.Robertazzi,D.Frank,K.Tien,J.Timmerwilke,P.Song and D.Friedman,Charact
154、erization of 14nm CMOS Technology At Cryogenic Temperatures Using Dense Addressable Arrays,2024 IEEE 42nd VLSI Test Symposium(VTS),Tempe,AZ,USA,2024,pp.1-7,doi:10.1109/VTS60656.2024.10538856.B.C.Paz et al.,Variability Evaluation of 28nm FD-SOI Technology at Cryogenic Temperatures down to 100mK for Q
155、uantum Computing,2020 IEEE Symposium on VLSI Technology,Honolulu,HI,USA,2020,pp.1-2,doi:10.1109/VLSITechnology18217.2020.9265034.A.Grill et al.,Temperature Dependent Mismatch and Variability in a Cryo-CMOS Array with 30k Transistors,2022 IEEE International Reliability Physics Symposium(IRPS),Dallas,
156、TX,USA,2022,pp.10A.1-1-10A.1-6,doi:10.1109/IRPS48227.2022.9764594.J.P.G.Van Dijk et al.,A Scalable Cryo-CMOS Controller for the Wideband Frequency-Multiplexed Control of Spin Qubits and Transmons,in IEEE Journal of Solid-State Circuits,vol.55,no.11,pp.2930-2946,Nov.2020,doi:10.1109/JSSC.2020.3024678
157、.Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing85 of 82 2025 IEEE International Solid-State Circuits ConferenceReferencesP.A.T Hart,M.Babaie,A.Vladimirescu and F.Sebastiano,Characterization and Modeling of Self-Heating in Nanometer Bulk-CMOS at Cryogenic Tempera
158、tures,in IEEE Journal of the Electron Devices Society,vol.9,pp.891-901,2021,doi:10.1109/JEDS.2021.3116975.B.Prabowo et al.,13.3 A 6-to-8GHz 0.17mW/Qubit Cryo-CMOS Receiver for Multiple Spin Qubit Readout in 40nm CMOS Technology,2021 IEEE International Solid-State Circuits Conference(ISSCC),San Franc
159、isco,CA,USA,2021,pp.212-214,doi:10.1109/ISSCC42613.2021.9365848.G.Kiene,A.G.Sreenivasulu,R.W.J.Overwater,M.Babaie and F.Sebastiano,Cryogenic Comparator Characterization and Modeling for a Cryo-CMOS 7b 1-GSa/s SAR ADC,ESSCIRC 2022-IEEE 48th European Solid State Circuits Conference(ESSCIRC),Milan,Ital
160、y,2022,pp.53-56,doi:10.1109/ESSCIRC55480.2022.9911474.G.Kiene,S.?lik,L.Mastrodomenico,M.Babaie and F.Sebastiano,Cryogenic Characterization of Low-Frequency Noise in 40-nm CMOS,in IEEE Journal of the Electron Devices Society,vol.12,pp.573-580,2024,doi:10.1109/JEDS.2024.3432283.J.Yoo et al.,Design and
161、 Characterization of a 4-mW/Qubit 28-nm Cryo-CMOS Integrated Circuit for Full Control of a Superconducting Quantum Processor Unit Cell,in IEEE Journal of Solid-State Circuits,vol.58,no.11,pp.3044-3059,Nov.2023,doi:10.1109/JSSC.2023.3309317.L.L.Guevel,C.Wang and J.C.Bardin,29.1 A 22nm FD-SOI 1.2mW/Ac
162、tive-Qubit AWG-Free Cryo-CMOS Controller for Fluxonium Qubits,2024 IEEE International Solid-State Circuits Conference(ISSCC),San Francisco,CA,USA,2024,pp.1-3,doi:10.1109/ISSCC49657.2024.10454522.J.P.G.van Dijk,B.Patra,S.Pellerano,E.Charbon,F.Sebastiano and M.Babaie,Designing a DDS-Based SoC for High
163、-Fidelity Multi-Qubit Control,in IEEE Transactions on Circuits and Systems I:Regular Papers,vol.67,no.12,pp.5380-5393,Dec.2020,doi:10.1109/TCSI.2020.3019413.S.Chakraborty et al.,A Cryo-CMOS Low-Power Semi-Autonomous Transmon Qubit State Controller in 14-nm FinFET Technology,in IEEE Journal of Solid-
164、State Circuits,vol.57,no.11,pp.3258-3273,Nov.2022,doi:10.1109/JSSC.2022.3201775.Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing86 of 82 2025 IEEE International Solid-State Circuits ConferenceReferencesK.Kang,D.Minn,J.Lee,H.-J.Song,M.Lee and J.-Y.Sim,34.4 A Cryoge
165、nic Controller IC for Superconducting Qubits with DRAG Pulse Generation by Direct Synthesis without Using Memory,2023 IEEE International Solid-State Circuits Conference(ISSCC),San Francisco,CA,USA,2023,pp.33-35,doi:10.1109/ISSCC42615.2023.10067671.Y.Guo et al.,29.4 A Cryo-CMOS Quantum Computing Unit
166、 Interface Chipset in 28nm Bulk CMOS with Phase-Detection Based Readout and Phase-Shifter Based Pulse Generation,2024 IEEE International Solid-State Circuits Conference(ISSCC),San Francisco,CA,USA,2024,pp.476-478,doi:10.1109/ISSCC49657.2024.10454392.R.C.Kwende,D.Rosenstock,C.Wang and J.C.Bardin,Desi
167、gn and Characterization of a 6-mW Cryogenic SiGe IC for Superconducting Qubit Readout,in IEEE Transactions on Microwave Theory and Techniques,doi:10.1109/TMTT.2024.3456111.Z.Zou,S.Raman and J.C.Bardin,A 1.6-mW Cryogenic SiGe LNA IC for Quantum Readout Applications Achieving 2.6-K Average Noise Tempe
168、rature From 3 to 6 GHz,in IEEE Microwave and Wireless Technology Letters,vol.34,no.6,pp.753-756,June 2024,doi:10.1109/LMWT.2024.3395114.K.Kang et al.,A 40-nm Cryo-CMOS Quantum Controller IC for Superconducting Qubit,in IEEE Journal of Solid-State Circuits,vol.57,no.11,pp.3274-3287,Nov.2022,doi:10.11
169、09/JSSC.2022.3198663.Y.Peng,A.Ruffino,T.-Y.Yang,J.Michniewicz,M.F.Gonzalez-Zalba and E.Charbon,A Cryo-CMOS Wideband Quadrature Receiver With Frequency Synthesizer for Scalable Multiplexed Readout of Silicon Spin Qubits,in IEEE Journal of Solid-State Circuits,vol.57,no.8,pp.2374-2389,Aug.2022,doi:10.
170、1109/JSSC.2022.3174605.Zwerver,A.M.J.,Krhenmann,T.,Watson,T.F.et al.Qubits made by advanced semiconductor manufacturing.Nat Electron 5,184190(2022).https:/doi.org/10.1038/s41928-022-00727-9Pauka,S.J.,Das,K.,Kalra,R.et al.A cryogenic CMOS chip for generating control signals for multiple qubits.Nat El
171、ectron 4,6470(2021).https:/doi.org/10.1038/s41928-020-00528-yP.Vliex et al.,Bias Voltage DAC Operating at Cryogenic Temperatures for Solid-State Qubit Applications,in IEEE Solid-State Circuits Letters,vol.3,pp.218-221,2020,doi:10.1109/LSSC.2020.3011576.Fabio SebastianoFundamentals of Cryo-CMOS Circu
172、its and Systems for Quantum Computing87 of 82 2025 IEEE International Solid-State Circuits ConferenceReferencesL.Schreckenberg et al.,SiGe Qubit Biasing with a Cryogenic CMOS DAC at mK Temperature,ESSCIRC 2023-IEEE 49th European Solid State Circuits Conference(ESSCIRC),Lisbon,Portugal,2023,pp.161-16
173、4,doi:10.1109/ESSCIRC59616.2023.10268801.S.Subramanian et al.,A Scalable mK Cryo-CMOS Demultiplexer Chip for Voltage Biasing and High-Speed Control of Silicon Qubit Gates,2024 IEEE Symposium on VLSI Technology and Circuits(VLSI Technology and Circuits),Honolulu,HI,USA,2024,pp.1-2,doi:10.1109/VLSITec
174、hnologyandCir46783.2024.10631530.J.Park et al.,A Fully Integrated Cryo-CMOS SoC for State Manipulation,Readout,and High-Speed Gate Pulsing of Spin Qubits,in IEEE Journal of Solid-State Circuits,vol.56,no.11,pp.3289-3306,Nov.2021,doi:10.1109/JSSC.2021.3115988.Maximilian Rimbach-Russ et al,Simple fram
175、ework for systematic high-fidelity gate operationsQuantum Sci.Technol.vol.8,no.045025,2023.B.Prabowo et al.,29.3 A Cryo-CMOS Receiver with 15K Noise Temperature Achieving 9.8dB SNR in 10s Integration Time for Spin Qubit Readout,2024 IEEE International Solid-State Circuits Conference(ISSCC),San Franc
176、isco,CA,USA,2024,pp.474-476,doi:10.1109/ISSCC49657.2024.10454300.B.Prabowo,J.Dijkema,X.Xue,F.Sebastiano,L.M.K.Vandersypen and M.Babaie,Modeling and Experimental Validation of the Intrinsic SNR in Spin Qubit Gate-Based Readout and Its Impacts on Readout Electronics,in IEEE Transactions on Quantum Eng
177、ineering,vol.5,pp.1-15,2024,Art no.3101315,doi:10.1109/TQE.2024.3385673.Curry,M.J.,Rudolph,M.,England,T.D.et al.Single-Shot Readout Performance of Two Heterojunction-Bipolar-Transistor Amplification Circuits at Millikelvin Temperatures.Sci Rep 9,16976(2019).https:/doi.org/10.1038/s41598-019-52868-1L
178、.L.Guevel et al.,19.2 A 110mK 295W 28nm FDSOI CMOS Quantum Integrated Circuit with a 2.8GHz Excitation and nA Current Sensing of an On-Chip Double Quantum Dot,2020 IEEE International Solid-State Circuits Conference-(ISSCC),San Francisco,CA,USA,2020,pp.306-308,doi:10.1109/ISSCC19947.2020.9063090.H.Fu
179、keta,I.Akita,T.Ishikawa,H.Koike and T.Mori,A Cryogenic CMOS Current Integrator and Correlation Double Sampling Circuit for Spin Qubit Readout,in IEEE Transactions on Circuits and Systems I:Regular Papers,vol.70,no.12,pp.5220-5228,Dec.2023,doi:10.1109/TCSI.2023.3317895.Fabio SebastianoFundamentals of
180、 Cryo-CMOS Circuits and Systems for Quantum Computing88 of 82 2025 IEEE International Solid-State Circuits ConferenceReferencesM.Castriotta,E.Prati and G.Ferrari,Fully Integrated Cryo-CMOS Spin-to-Digital Readout for Semiconductor Qubits,in IEEE Solid-State Circuits Letters,vol.6,pp.185-188,2023,doi
181、:10.1109/LSSC.2023.3292523.Q.Schmidt et al.,A 7.4W and 860m2per Channel Cryo-CMOS IC for 70-Channel Frequency-Multiplexed s-Readout of Semiconductor Qubits,2024 IEEE Custom Integrated Circuits Conference(CICC),Denver,CO,USA,2024,pp.1-2,doi:10.1109/CICC60959.2024.10529081.L.Enthoven,M.Babaie and F.Se
182、bastiano,Optimizing the Electrical Interface for Large-Scale Color-Center Quantum Processors,in IEEE Transactions on Quantum Engineering,vol.5,pp.1-17,2024,Art no.5500317,doi:10.1109/TQE.2024.3416836.N.Fakkel et al.,A Cryo-CMOS Controller With Class-DE Driver and DC Magnetic-Field Tuning for Quantum
183、 Computers Based on Color Centers in Diamond,in IEEE Journal of Solid-State Circuits,vol.59,no.11,pp.3627-3643,Nov.2024,doi:10.1109/JSSC.2024.3459392.H.Cryogenic electronics for the read-out of quantum processors,PhD thesis,Delft University of Technology,https:/doi.org/10.4233/uuid:e833f394-c8b1-46e
184、2-86b8-da0c71559538J.van Staveren et al.,Cryo-CMOS Voltage References for the Ultrawide Temperature Range From 300 K Down to 4.2 K,in IEEE Journal of Solid-State Circuits,vol.59,no.9,pp.2884-2894,Sept.2024,doi:10.1109/JSSC.2024.3378768.J.Gong,E.Charbon,F.Sebastiano and M.Babaie,A Cryo-CMOS PLL for Q
185、uantum Computing Applications,in IEEE Journal of Solid-State Circuits,vol.58,no.5,pp.1362-1375,May 2023,doi:10.1109/JSSC.2022.3223629.R.A.Damsteegt,R.W.J.Overwater,M.Babaie and F.Sebastiano,A Benchmark of Cryo-CMOS Embedded SRAM/DRAMs in 40-nm CMOS,in IEEE Journal of Solid-State Circuits,vol.59,no.7
186、,pp.2042-2054,July 2024,doi:10.1109/JSSC.2024.3385696.R.N.Das et al.,Cryogenic Qubit Integration for Quantum Computing,2018 IEEE 68th Electronic Components and Technology Conference(ECTC),San Diego,CA,USA,2018,pp.504-514,doi:10.1109/ECTC.2018.00080.D.Rosenberg et al.,Solid-State Qubits:3D Integratio
187、n and Packaging,in IEEE Microwave Magazine,vol.21,no.8,pp.72-85,Aug.2020,doi:10.1109/MMM.2020.2993478.O.Mukhanov et al.,Scalable Quantum Computing Infrastructure Based on Superconducting Electronics,2019 IEEE International Electron Devices Meeting(IEDM),San Francisco,CA,USA,2019,pp.31.2.1-31.2.4,doi:10.1109/IEDM19573.2019.8993634.Fabio SebastianoFundamentals of Cryo-CMOS Circuits and Systems for Quantum Computing89 of 82