《固態電解質理論配方設計與實驗驗證-邵國勝.pdf》由會員分享,可在線閱讀,更多相關《固態電解質理論配方設計與實驗驗證-邵國勝.pdf(28頁珍藏版)》請在三個皮匠報告上搜索。
1、A designer materials approach for solid battery materials:theory vs.experiments Dr/Prof Guosheng Shao 邵國勝State Centre for International Cooperation on Designer Low-carbon&Environmental Materials(CDLCEM)低碳環保材料智能設計國際聯合實驗室Zhengzhou University 鄭州大學Zhengzhou Materials Genome Institute(ZMGI)http:/-Key Inn
2、ovation Organization of Henan ProvinceLiyang March 23-24,2024Safety is a great concern for metal ion batteries Ever increasing demands of metal ion batteries to sustain a low-carbon world Fire accidents involving numerous large scale battery systems and electrical vehicles Higher energy batteries wi
3、th higher VOC and energy densities are even less safe Solid electrolytes are recognized to be fundamentally promising Necessary to be able to formulate new materials more efficiently at lowered costs:sustainable resources,green and cheap matter.MSUP-a designer approachNeed configurations(shape,size,
4、interface/surface)properties(mechanical,physical,chemical)functionalities(electronic,photonic,magnetic,biological,catalytic)TheoryDataExperimentTo understandTo predictTo seeTo make compositions microstructures properties/functionalitiesMaterials scienceMSUP系統試驗系統試驗-可靠表征可靠表征-理論演繹理論演繹理論先行理論先行-實驗驗證實驗驗證
5、-工藝優化工藝優化DFT basis for designing battery materials Approximations for DFT only hidden in XC functionals Local functionals(LDA,GGA)largely dependable to structure-energy properties at the ground state(zero kelvin,crystalline phases),e.g.PBE description of GGA Entropy(vibrational)for dynamically stabl
6、e phases determined by ground state binding Electrochemical properties dictated by cohesive energy(binding energy from free atoms in large vacuum).Thermal contribution for battery materials rather trivial(energy for melting only around 10%of the cohesive energy)=+/Reasonably acceptable hybrid XC ava
7、ilable for band structures,e.g.HSE06,albeit being aware of no ubiquitous non-local formalism(As an extreme case,none of anyone of the non-locals is capable to cope with copper oxides CuO,Cu2O!)Integrated DFT Materials Genome Approach for solid battery materialsGlobal search for stable structures:ene
8、rgetic and dynamical stabilities1.Cubic argyrodite hali-chalcogenides Li6PA5I(a)Li6PS5I,(b)Li6PSe5I,(c)Li6PTe5I,(d)Li6PSO4I,(e)Li6PSeS4I,and(f)Li6PTeS4I(a)Li6PS5I,(b)Li6PSe5I,(c)Li6PTe5I,(d)Li6PSO4I,(e)Li6PSeS4I,(f)Li6PTeS4I,(g)Li6PS5Cl,(h)Li6PTeS4Cl,and(i)Li6PTe5Cl.Tuning Alloying for superb ionic
9、conductivity:Te for S,Cl for I,excess Li charge-neutralityJ.Mater.Chem.A,2017,5,21846-21857Li6PS5ClLi6PTe5ClLi6PS4TeClExperimental realization=22=220()=(J.Mater.Chem.A,2018,6,19231-19240Lattice softening superb ionic conductivity-“Grain boundary resistance”concept questionableGraded electrolyte buff
10、ers to avoid interfacial reactionsJ Mater Chem A 2019,7,5239-5247Li6PO5Cl|Li0.25MnO2 interfacial structures(a)before and(b)after AIMD calculation.(c)Li+diffusion path across the Li6PO5Cl|Li0.25MnO2 interface(90 ps at 400 K).x n Li6PS5-xOxCl Stable LCOLiNbO3|Li6.25PS5.25Cl0.75|Li cellJ Energy Chemist
11、ry 53(2021)147154 Partial O for S:more stable SSEEEM 2022 One stone for two birds:good SSE without need of coating for LCO!Remarkable electrochemical advantage over LGPS.Great commercial interest in practical exploitation across China-Japan.2.Anti-perovskite to double-anti-perovskiteElectric insulat
12、ing,superbly ionic conducting(a)Li+vacancy diffusive pathway(b)interstitial channel in a dumbbell pathway AIMD:Ea=0.18 eV,Li+conductivity(300K)=12.5 mS/cmThe materials have been madeJ.Mater.Chem.A,2018,6,73-83ACS Appl.Energy Mater.2019,2,6288-62943.Na6SOI2 double anti-perovskiteJ.Mater.Chem.A,2018,6
13、,19843-19852Na+conductivity(mS/cm):10.36(300K),1.79(223K)Activation 0.16 eV4.What if separated into 2D layers?Discovery of Ruddlesden-Popper type anti-perovskite(ARP)Identified first stable hali-chalcogenide Na4OSI2 based alloys with respect to stable constituent phases Na+/Li+Dual Ion alloying effe
14、ctNa3LiS0.5O0.5I2_65 corresponding to minimal energy!Na4-x)LixS0.5O0.5I2(0 x1)Best and stable Na+conductors identified Na31S4O4I16 vs.Na23Li8S4O4I16 6.3 (300K)1.31(223K)mS/cm One system for both cathode and SE:Low lattice mismatch&wide voltage rangeFull cell with compatible phases in the same system
15、Stable materials systemMechanically compatibleTheoretical energy density limit over 900 Wh/kg Reversible energy density 320 Wh/kgJ.Mater.Chem.A,2019,7,10483-104935.Na3AO4X(A=S/Se,X=F/Cl)as completely stable SEDouble anti-perovskiteNa3SeO4F0.5Cl0.5:Na6X octahedrons(S,Se)O4 at body-centres Anti-perovs
16、kite Na3SO4Cl metastable Double anti-perovskite with alternating Na6Cl and Na6F units complete stability Insensitive to water or oxygenAIMD simulation to reveal interaction of oxygen and water,showing trajectories of O2-and H+next to(a,d)Na3SO4F0.5Cl0.5,(b,e)Na3SO4Cl and(c,f)Na3SeO4F0.5Cl0.5 over a
17、simulation time of 180 ps at 300 K.Na+conductivity in Na3SeO4F0.5Cl0.5,:8.167 mS/cm at 300 K and 1.31 mS/cm at 223K;activation barrier only 0.137 eVJ.Mater.Chem.A,2019,7,21985-21996O2-H+6.Li+encaged systems:Voc 4V;compatable with Li-anode(a)Li6MX8(M=Co,Cu,Fe,Mg,Mn),Li6NiCl8;(b)Li6TiX8;(c)Li4MX6(M=Fe
18、,Mn,Ti);(d)Li3AlCl6,Li3FeX6;(e)Li2TiX4,Li2MnBr4,Li2CoCl4,Li2MgBr4;(f)Li2CuX4,(g)Li2CoBr4;(h)Li2MgCl4,Li2MnCl4,Li2FeX4;(i)LiFeX4;(j)LiNiX3;(k)LiCuX3;(l)LiTiCl3;(m)LiZnCl3 Li3AlCl6LiZnCl3 OptimalIon Conductivity(mS/cm)Ea(eV)Li2.125Y0.625Cl46.110.247Li2.5Y0.5Cl48.420.244Li3AlCl6 8.980.242LiZnCl37.5240.
19、237with1/80 Li/Cl vacJ.Mater.Chem.A,2021,9,14969-14976.J.Mater.Chem.A,2021,9,25585-25594.7.Anode-cathode for SIBsIntercalation of Na+continuously to MXene Ti2CO(up to 10 layers)Cathode and anode based on same system:high capacity,wide V window,flexible J.Mater.Chem.A 2020,8,11177-111878.Protective c
20、oating to Li anodeRelated experimental proof in principle:Wang et al.Adv Mater 2020,200274.(LiF-Li3N)Li-halides:high oxidation potential but very insulating to Li+Li-nitrides:good Li+conductor,but very low oxidation potential about 0.5 VIdentified Li6NCl3 as stable compound,with both high oxidation
21、potential and high ionic conductivity Phys.Chem.Chem.Phys.,2020,22,12918-12928Publications1.Zhuo Wang and G.Shao,J.Mater.Chem.A,2017,5,2184621857.2.Z.Wang,Hongjie Xu,M.Xuan and G.Shao,J.Mater.Chem.A,2018,6,73-83.3.Z.Wang and G.Shao,J.Mater.Chem.A,2018,6,6830-6839.4.Minjie Xuan,Weidong Xiao,H.Xu,Y.Sh
22、en,Zhenzhen Li,Shijie Zhang,Z.Wang and G.Shao,J.Mater.Chem.A,2018,6,19231-19240.5.Yuran Yu,Z.Wang and G.Shao,J Mater.Chem.A,2018,6,19843-19852.6.H.Xu,Y.Yu,Z.Wang and G.Shao,J.Mater.Chem.A,2019,7,5239-5247.7.H.Xu,Y.Yu,Z.Wang and G.Shao,Energy Environ.Mater.,2019,2,234-250.8.Y.Yu,Z.Wang and G.Shao,J.M
23、ater.Chem.A,2019,7,21985-21996.9.Y.Yu,Z.Wang and G.Shao,J.Mater.Chem.A,2019,7,10483-10493.10.Xiangdan Zhang,Z.Wang,and G.Shao,J.Mater.Chem.A,2020,8,11177-11187.11.H.Xu,W.Xiao,Z.Wang,J.Hu and G.Shao,J.Energy Chem.,2021,59,229-241.12.W.Xiao,H.Xu,M.Xuan,Zhiheng Wu,Yongshang Zhang,X.Zhang,S.Zhang,Y.Shen
24、,and G.Shao,J.Energy Chem.,2021,53,147-154.13.Yuanyuan Huang,Y.Yu,H.Xu,X.Zhang,Z.Wang and G.Shao,J.Mater.Chem.A,2021,9,14969-14976.14.Y.Yu,H.Xu,Z.Wang and G.Shao,Batteries Supercaps,2021,4,1096-1107.15.Y.Yu,Z.Wang and G.Shao,J.Mater.Chem.A,2021,9,25585-25594.16.H.Xu,G.Cao,Y.Shen,Y.Yu,J.Hu,Z.Wang,and G.Shao,Energy Environ.Mater.,2022,5,852-864.17.Y.Yu,Yuanyuan Huang,Zibo Xu,Zhiheng Wu,Zhuo Wang,*and Guosheng Shao*,Adv Funct Mater,2024,2315512Thank you for attention!