《SESSION 17 - Emerging Sensing and Computing Technologies.pdf》由會員分享,可在線閱讀,更多相關《SESSION 17 - Emerging Sensing and Computing Technologies.pdf(456頁珍藏版)》請在三個皮匠報告上搜索。
1、ISSCC 2024SESSION 17Emerging Sensing and Computing Technologies17.1 Omnidirectional Magnetoelectric Power Transfer for Miniaturized Biomedical Implants via Active Echo 2024 IEEE International Solid-State Circuits Conference1 of 65Omnidirectional Magnetoelectric Power Transfer for Miniaturized Biomed
2、ical Implants via Active EchoWei Wang,Zhanghao Yu,Yiwei Zou,Joshua Woods,Prahalad Chari,Jacob T.Robinson,and Kaiyuan YangRice University,Houston,TX17.1 Omnidirectional Magnetoelectric Power Transfer for Miniaturized Biomedical Implants via Active Echo 2024 IEEE International Solid-State Circuits Con
3、ference2 of 651950First fully implantable2010 Miniaturized2016Leadless&Integrated55cc,120g10cc,20g10cc,20gWireless Implantable Bio-stimulator17.1 Omnidirectional Magnetoelectric Power Transfer for Miniaturized Biomedical Implants via Active Echo 2024 IEEE International Solid-State Circuits Conferenc
4、e3 of 651950First fully implantable2010 Miniaturized2016Leadless&Integrated55cc,120g10cc,20g10cc,20gImplantFutureBatteryless&Multi-function0.1cc,LR k LR k VRX2 VRX3;1=2=0,3=pi17.1 Omnidirectional Magnetoelectric Power Transfer for Miniaturized Biomedical Implants via Active Echo 2024 IEEE Internatio
5、nal Solid-State Circuits Conference44 of 65Outline Background and Challenges Proposed System Overview System Implementation Measurements Conclusion17.1 Omnidirectional Magnetoelectric Power Transfer for Miniaturized Biomedical Implants via Active Echo 2024 IEEE International Solid-State Circuits Con
6、ference45 of 65Measurement of Implant Chip:Overview1.68mm0.8mmPulse TXCentral controllerPMUStimCLK V&IVLDO_TX capVLDO capDC-DC capVLDO_TX capVRECT cap14.2mm3integrated implant*250nH AE sensing coil5x2x0.18mm ME film*without encapsulationBiasing magnetsElectrodeME film12mm17.1 Omnidirectional Magneto
7、electric Power Transfer for Miniaturized Biomedical Implants via Active Echo 2024 IEEE International Solid-State Circuits Conference46 of 65Measurement of Implant Chip:Pulse TXSpectrum and Power Level of 3-level PA and 2-level3-level PA2-level PA-60-40-20020Power(dBm)1M2M3M4M5MFrequency(Hz)030dB dif
8、f2.2dB diff500mV200nsVOPVONVOP-VONPA Output w/o Loading50100200400600800Power(nW)Update Freq(Hz)Save 22%Save 27%17.1 Omnidirectional Magnetoelectric Power Transfer for Miniaturized Biomedical Implants via Active Echo 2024 IEEE International Solid-State Circuits Conference47 of 65Measurement of Exter
9、nal RX Chip:Overview1.95mm0.83mmLDOLNAPGABPFLDOcapChannel 2Channel 3RampGenPhase DetectorScan ChainTest BufferPeak DetADCController17.1 Omnidirectional Magnetoelectric Power Transfer for Miniaturized Biomedical Implants via Active Echo 2024 IEEE International Solid-State Circuits Conference48 of 65M
10、easurement of External RX Chip:AFE100k1M10M4550556065Voltage Gain(dB)Frequency(Hz)Input referred noise:-161dBm/HzOutput noise:3.2mVrms 120 110 100 90 80Output Noise(dBm/Hz)Updated after improving the testing setup17.1 Omnidirectional Magnetoelectric Power Transfer for Miniaturized Biomedical Implant
11、s via Active Echo 2024 IEEE International Solid-State Circuits Conference49 of 65Measurement of TX Coil Array1624324048 60 50 40 30 20Center to center distance(mm)S21 Amplitude(dB)120 60060S21 phase(degree)in-phaseopposite-phase Measured Amp Measured Phase Simulated Amp17.1 Omnidirectional Magnetoel
12、ectric Power Transfer for Miniaturized Biomedical Implants via Active Echo 2024 IEEE International Solid-State Circuits Conference50 of 65System Measurement:Working Procedure VAC1STIM1VRX1VRX2C*TSDownlink*C:Charging phase;TS:Task sequence10ms20msStimulation:Amplitude:3VPW:0.4msTSCharging17.1 Omnidir
13、ectional Magnetoelectric Power Transfer for Miniaturized Biomedical Implants via Active Echo 2024 IEEE International Solid-State Circuits Conference51 of 65System Measurement:Working Procedure VAC1STIM1VRX1VRX2C*TSDownlink*C:Charging phase;TS:Task sequence10ms20msStimulation:Amplitude:3VPW:0.4msTSCh
14、argingInterference from coil driverVAC Notch defined Active Echo trans windowDifference phase1.35MHzInitial16 cyclesStopVAC117.1 Omnidirectional Magnetoelectric Power Transfer for Miniaturized Biomedical Implants via Active Echo 2024 IEEE International Solid-State Circuits Conference52 of 65System M
15、easurement:Active Echoyxz(0,0,15)1,0,0TX1TX3TX2Rotation BarPackaged ME,magnets,AE coilImplant board with testing pinTX coil array1.5cm PorcineIn-vitro testing setup17.1 Omnidirectional Magnetoelectric Power Transfer for Miniaturized Biomedical Implants via Active Echo 2024 IEEE International Solid-S
16、tate Circuits Conference53 of 65Vrx3:961mVVrx2:930mVVrx1:100mVADCOUT1,2,3126,32,281,2,31,1,0kR1:kR2:kR30.2:1.86:1.9I1:I2:I30:1.86:1.9System Measurement:Active Echoyxz(0,0,15)1,0,0TX1TX3TX2Vrx3:961mVVrx2:930mVVrx1:100mV17.1 Omnidirectional Magnetoelectric Power Transfer for Miniaturized Biomedical Im
17、plants via Active Echo 2024 IEEE International Solid-State Circuits Conference54 of 65System Measurement:Active Echoyxz(0,0,15)1,0,0TX1TX3TX200.51.01.52.00.70.80.91.0TX2/TX3 Current ratio(TX1 always off)Turn-on TX3 onlyNormalized PTE(%)Current Sweep17.1 Omnidirectional Magnetoelectric Power Transfer
18、 for Miniaturized Biomedical Implants via Active Echo 2024 IEEE International Solid-State Circuits Conference55 of 6500.51.01.52.00.70.80.91.0TX2/TX3 Current ratio(TX1 always off)Turn-on TX3 only34%improvementNormalized PTE(%)AE solved point1.8%drop from 1Current SweepSystem Measurement:Active Echoy
19、xz(0,0,15)1,0,0TX1TX3TX217.1 Omnidirectional Magnetoelectric Power Transfer for Miniaturized Biomedical Implants via Active Echo 2024 IEEE International Solid-State Circuits Conference56 of 65Current Sweep0.50.60.70.80.91.0AE solved point2.0%drop from 166%improvementTurn-on TX3 only00.51.01.52.0TX2/
20、TX3 Current ratio(TX1 always off)Normalized PTE(%)System Measurement:Active Echoyz(10,10,25)1,0,sqrt(3)xTX1TX3TX217.1 Omnidirectional Magnetoelectric Power Transfer for Miniaturized Biomedical Implants via Active Echo 2024 IEEE International Solid-State Circuits Conference57 of 65Angular Rotation De
21、mo17.1 Omnidirectional Magnetoelectric Power Transfer for Miniaturized Biomedical Implants via Active Echo 2024 IEEE International Solid-State Circuits Conference58 of 65Efficiency vs.Angular Offset at(0,0,20)from 0,0,1 to 1,0,0Single coil only at originPower Transfer Efficiency(%)0204060801000.00.5
22、1.01.52.0Angular Offset(Degree)Efficiency vs.Lateral Offset Along X-axis from(-20,10,20)Power Transfer Efficiency(%)Single coil only at origin-20-10010200.00.51.01.5Lateral Offset(mm)Compared with Baseline17.1 Omnidirectional Magnetoelectric Power Transfer for Miniaturized Biomedical Implants via Ac
23、tive Echo 2024 IEEE International Solid-State Circuits Conference59 of 65Efficiency vs.Angular Offset at(0,0,20)from 0,0,1 to 1,0,0Turn-on three coils w/o controlSingle coil only at originPower Transfer Efficiency(%)0204060801000.00.51.01.52.0Angular Offset(Degree)Efficiency vs.Lateral Offset Along
24、X-axis from(-20,10,20)Power Transfer Efficiency(%)Turn-on three coils w/o controlSingle coil only at origin-20-10010200.00.51.01.5Lateral Offset(mm)Compared with Baseline17.1 Omnidirectional Magnetoelectric Power Transfer for Miniaturized Biomedical Implants via Active Echo 2024 IEEE International S
25、olid-State Circuits Conference60 of 65Compared with BaselineEfficiency vs.Angular Offset at(0,0,20)from 0,0,1 to 1,0,0Optimal controlTurn-on three coils w/o controlSingle coil only at originPower Transfer Efficiency(%)0204060801000.00.51.01.52.0Angular Offset(Degree)6.8x Efficiency vs.Lateral Offset
26、 Along X-axis from(-20,10,20)Power Transfer Efficiency(%)Optimal controlTurn-on three coils w/o controlSingle coil only at origin-20-10010200.00.51.01.5Lateral Offset(mm)18xDouble working area17.1 Omnidirectional Magnetoelectric Power Transfer for Miniaturized Biomedical Implants via Active Echo 202
27、4 IEEE International Solid-State Circuits Conference61 of 65Comparison TableThis WorkZ.YuRFIC22 2Z.YuJSSC22 3J.LeeNat.Elec.21 10J.TangISSCC21 1D.PiechNat.BME20 9J.CharthadTBioCAS18WPT MechanismME(340kHz)ME(340kHz)ME(330kHz)Inductive(900MHz)Inductive(6.78MHz)Ultrasound(1.85MHz)Ultrasound(1.314MHz)TX
28、typePlanar Coil ArrayTX Coil+Sense CoilSingle CoilTX Coil+Relay CoilSingle CoilSingle TransducerSingle TransducerPower Transducer Size(mm)520.18420.1420.10.5x0.5(on-chip)2525(PCB)*10.80.81.65x1.5x1.5Global RegulationYes,Active Echo Yes,LSK Backscatter NoNoYes,LSK Backscatter NoNoTechnology(nm)180180
29、1806518065180HVBio-ApplicationStimulationStimulationStimulationRecordingN/AStimulationStimulationOmnidirectionalYesNoNo(50 rotation)NoNoNo(45 rotation)No(45 rotation)Peak PTE(Aligned)*1.58%(20mm)0.2%(20mm)0.5%(20mm)0.08%(8mm)61.9%(6.5mm)0.06%(18mm)0.04%(105mm)Peak PTE(90 Rotation)*0.89%(20mm)N/A0.04
30、5%(20mm)$N/AN/AN/AN/AMaximum Received Power*7.9mW(20mm)N/AN/A0.025mW(8mm)32mW(6.5mm)0.0097mW(18mm)5.94mW(10.5cm)FoM#114400160N/A100010679281*Assume the thickness of PCB is 1mm;*TX-RX distance in();#FoM=PowerTransducerVolume/PTE;$Read from figure17.1 Omnidirectional Magnetoelectric Power Transfer for
31、 Miniaturized Biomedical Implants via Active Echo 2024 IEEE International Solid-State Circuits Conference62 of 65Comparison TableThis WorkZ.YuRFIC22 2Z.YuJSSC22 3J.LeeNat.Elec.21 10J.TangISSCC21 1D.PiechNat.BME20 9J.CharthadTBioCAS18WPT MechanismME(340kHz)ME(340kHz)ME(330kHz)Inductive(900MHz)Inducti
32、ve(6.78MHz)Ultrasound(1.85MHz)Ultrasound(1.314MHz)TX typePlanar Coil ArrayTX Coil+Sense CoilSingle CoilTX Coil+Relay CoilSingle CoilSingle TransducerSingle TransducerPower Transducer Size(mm)520.18420.1420.10.5x0.5(on-chip)2525(PCB)*10.80.81.65x1.5x1.5Global RegulationYes,Active Echo Yes,LSK Backsca
33、tter NoNoYes,LSK Backscatter NoNoTechnology(nm)1801801806518065180HVBio-ApplicationStimulationStimulationStimulationRecordingN/AStimulationStimulationOmnidirectionalYesNoNo(50 rotation)NoNoNo(45 rotation)No(45 rotation)Peak PTE(Aligned)*1.58%(20mm)0.2%(20mm)0.5%(20mm)0.08%(8mm)61.9%(6.5mm)0.06%(18mm
34、)0.04%(105mm)Peak PTE(90 Rotation)*0.89%(20mm)N/A0.045%(20mm)$N/AN/AN/AN/AMaximum Received Power*7.9mW(20mm)N/AN/A0.025mW(8mm)32mW(6.5mm)0.0097mW(18mm)5.94mW(10.5cm)FoM#114400160N/A100010679281*Assume the thickness of PCB is 1mm;*TX-RX distance in();#FoM=PowerTransducerVolume/PTE;$Read from figure17
35、.1 Omnidirectional Magnetoelectric Power Transfer for Miniaturized Biomedical Implants via Active Echo 2024 IEEE International Solid-State Circuits Conference63 of 65ConclusionActive Echo(AE)technique enabled omnidirectional WPT system for mm-scale batteryless bio-implants-2%efficiency loss due to t
36、he tracking error-6.8x higher PTE at rotation from ideal alignmentMutual inductance cancelled multi-coil TX array-Reduce the S21 of two coil-50dB,mitigate the resonance frequency shift and current degradationFully integrated implantable and programable stimulator SOC17.1 Omnidirectional Magnetoelect
37、ric Power Transfer for Miniaturized Biomedical Implants via Active Echo 2024 IEEE International Solid-State Circuits Conference64 of 65AcknowledgementThe authors would like to thank Huan-Cheng Liao,Zhiyu Chen,Fatima T.Alrashdan,Yan He,and Xi Hu for technical discussions and support.This work is supp
38、orted by the National Science Foundation(NSF)CAREER program(2146476).17.1 Omnidirectional Magnetoelectric Power Transfer for Miniaturized Biomedical Implants via Active Echo 2024 IEEE International Solid-State Circuits Conference65 of 65Thank you!Welcome to attend our demo(DS2)Tonight 5:00-7:00 PM17
39、.1 Omnidirectional Magnetoelectric Power Transfer for Miniaturized Biomedical Implants via Active Echo 2024 IEEE International Solid-State Circuits Conference66 of 65Please Scan to Rate Please Scan to Rate This PaperThis Paper17.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASI
40、C Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference1 of 36A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3ResolutionShuhao Fan1,Qi Zhou1,Ka-Meng Lei1,Rui P.Martins1
41、,2,Pui-In Mak11 University of Macau,Macao,China2 Instituto Superior Tcnico/UL,Portugal17.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference2 of 36Outline Introduct
42、ion and Motivation IC Implementation and MeasurementPhase-interpolated Multi-GeneratorPower Amplifier&High-voltage Switches System Implementation and MeasurementMulti-nuclei NMR 19F MRI Tracking Comparison and Conclusion17.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achi
43、eving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference3 of 36Outline Introduction and Motivation IC Implementation and MeasurementPhase-interpolated Multi-GeneratorPower Amplifier&High-voltage Switches System Implementation and MeasurementMulti
44、-nuclei NMR 19F MRI Tracking Comparison and Conclusion17.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference4 of 36Nuclear Magnetic Resonance(NMR)Molecules typicall
45、y contain such MR-active nuclei with non-zero spins17.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference5 of 36Nuclear Magnetic Resonance(NMR)Natural StateIn Magne
46、tExcitationRelaxation*B0:static magnetic field B1:RF magnetic field :gyromagnetic ratio,a constant specific to different nuclei17.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Ci
47、rcuits Conference6 of 36Multi-Nuclei NMR/MRINucleus(MHz/T)fL(MHz)0.52-T B0Comments1H42.5822.2 Strongest signal,99.99%abundance Present in nearly all biomolecules Primary nucleus of interest for NMR/MRI19F40.0620.9 Strong signal,100%abundance Negligible in biological tissues Label/measure drugs,MRI t
48、racking31P17.249.0 Strong signal,100%abundance Essential in monitoring energy metabolism13C10.715.6 Weak signal,1.108%abundance Label substrates of metabolism17.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IE
49、EE International Solid-State Circuits Conference7 of 36Influences of RF Excitation Pulses B1amplitude limitation,broad chemical shifts off-resonance Solenoid RF coils non-uniform B1 Inhomogeneous B1 Homogeneous B1 On-resonance Off-resonance(Not exactly at fL)IdealNon-ideal17.2:A Miniature Multi-Nucl
50、ei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference8 of 36Influences of RF Excitation PulsesSolenoid B1Distribution*M.H.Levitt,Prog.Nucl.Magn.Reson.Spectrosc.,pp.61-122,198617.2:A Miniatur
51、e Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference9 of 36Influences of RF Excitation Pulses B1w/i A and tpenables wideband excitation off-resonance Essential HV-tolerant switc
52、hes protect RX from TX*S.Fan et al.,TCAS-I,vol.69,no.8,pp.3049-3060,Aug.2022HV Switch17.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference10 of 36Influences of RF
53、Excitation Pulses Off-chip Relay Sensitive to magnetic field Long signal path coupling noise On-chip Switch Near or in magnetic field Short signal path,noise 17.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IE
54、EE International Solid-State Circuits Conference11 of 36ObjectiveA Miniature Multi-nuclei NMR/MRI Platform Multi-generator w/i phase resolution 1Composite RF pulses off-resonance&B1compensation High-voltage transmitter&HV-tolerant switches Enlarged field of view(FOV)1H-&19F-MRI tracking Enhanced B1a
55、mplitude 19F NMR w/i broad chemical shifts17.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference12 of 36Outline Introduction and Motivation IC Implementation and Me
56、asurementPhase-interpolated Multi-GeneratorPower Amplifier&High-voltage Switches System Implementation and MeasurementMulti-nuclei NMR 19F MRI Tracking Comparison and Conclusion17.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m
57、3Resolution 2024 IEEE International Solid-State Circuits Conference13 of 36System Architecture First miniature multi-nuclei NMR/MRI platform with high-voltage silicon-on-insulator(HV-SOI)ASIC17.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR wit
58、h a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference14 of 36System Architecture Multi-generator based on phase-interpolated DLLs High-voltage PA&isolation switches17.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR wi
59、th a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference15 of 36Multi-Generator Conventional DLL*D.Krger et al.,IEEE JSSC,pp.1838-1849,July 202317.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolu
60、tion 2024 IEEE International Solid-State Circuits Conference16 of 36Multi-Generator Phase-interpolated DLL 17.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference17
61、of 36Multi-Generator Phase-interpolated DLL 17.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference18 of 36Multi-Generator Measured Output17.2:A Miniature Multi-Nucl
62、ei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference19 of 36Single-side PA&HV-tolerant Switch Current-mode class-D PA array V0p=VPA 125V On-chip HV-tolerant switch protect RX from TX,noise1
63、7.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference20 of 36PA Measured Output CapacityPA with RF coil load Configurable PA units befit various coil geometries Max
64、.2.64Appinjected into parallel-tuned RF coil17.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference21 of 36HV-tolerant Switch ENTXOperation(1/2)Excitation(ENRX:low)P
65、1off VR1=VGS,N20 N2off D2to block V2p0 propagating to V3p17.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference22 of 36HV-tolerant Switch ENTXOperation(2/2)17.2:A M
66、iniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference23 of 36HV-tolerant Switch Measured Isolation Attn.vs Freq.ensure coverage of fLrange for multi-nuclei Attn.vs VPA ver
67、ify RXs input voltage 101dB better than JSSC23)Benefit primarily from on-chip switches,shorter signal path*National Electrical Manufacturers Association,NEMA Standards Publication MS 6-2008,2014.*S.Fan et al.,IEEE JSSC,vol.58,no.7,pp.2028-2039,July 202317.2:A Miniature Multi-Nuclei NMR/MRI Platform
68、with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference31 of 361H&19F MRI1H and19F MR image acquisition MR signal amplitude 1H and19F concentration17.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltag
69、e SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference32 of 36Ex vivo19F Tracking with Porcine Sample1H MRI sample structure(muscle and fat)19F MRI tracking the Perfluorocarbon(PFC)17.2:A Miniature Multi-Nuclei NMR/MRI Platform w
70、ith a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference33 of 36Outline Introduction and Motivation IC Implementation and MeasurementPhase-interpolated Multi-GeneratorPower Amplifier&High-voltage Switches System Im
71、plementation and MeasurementMulti-nuclei NMR 19F MRI Tracking Comparison and Conclusion17.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference34 of 36Comparison Circ
72、uit Perspective17.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference35 of 36Comparison System Perspective17.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High
73、-Voltage SOI ASIC Achieving a 134.4dB Image SNR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference36 of 36Conclusion First miniature multi-nuclei NMR/MRI system with customized HV 180-nm IC Image resolution:173250103m3Image SNR:134dB(101dB better than JSSC23 3)Built
74、-in multi-generator with phase interpolationPhase resolution:0.7 Integrated HV PA&isolation switches 1.28Appw/i 100-resistive load(high power:20.5W)Switch attn.:-39.0 to-25.1dB,noise density:1nV/Hz17.2:A Miniature Multi-Nuclei NMR/MRI Platform with a High-Voltage SOI ASIC Achieving a 134.4dB Image S
75、NR with a 173250103m3Resolution 2024 IEEE International Solid-State Circuits Conference37 of 36Please Scan to Rate Please Scan to Rate This PaperThis Paper17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE Internationa
76、l Solid-State Circuits Conference1 of 56A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer TherapyRozhan Rabbani*1,Micah Roschelle*1,Surin Gweon1,Rohan Kumar1,Alec Vercruysse1,Nam Woo Cho2,Matthew Spitzer2,Ali Niknejad1,Vladimir Stojanovic1,
77、and Mekhail Anwar1,21University of California,Berkeley2University of California,San Francisco*Equally credited authors(ECAs)17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conferen
78、ce2 of 56Immunotherapy:Prospects and ChallengesChemotherapy Immunotherapy0 3 6 9 12 15 18Months 1008060Survival(%)402030%Durability Fewer side effectsImmunotherapy:The cure from withinM.Reck,NEJM1617.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitorin
79、g in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference3 of 56Tumor cellsG.Morad,Cell21Immunotherapy:Prospects and Challenges Low response rates(10-50%)Complex response mechanism(+)(+)(+)(-)(-)(+)(+)Immunity activators()Immunityregulators(+)Chemotherapy Immunotherapy0 3 6 9 12 15
80、 18Months 1008060Survival(%)4020M.Reck,NEJM1630%Durability Fewer side effectsImmune Cells?17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference4 of 56Tumor CellsG.Morad,Cell21
81、Immunotherapy:Prospects and Challenges Low response rates(10-50%)Complex response mechanism(+)(+)(+)(-)(-)(+)(+)Activators()Regulators(+)Chemotherapy Immunotherapy0 3 6 9 12 15 18Months 1008060Survival(%)402030%Durability Fewer side effects?Immune CellsKey Questions:Is the patient responding?If not,
82、why?M.Reck,NEJM1617.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference5 of 56Clinical Imaging Low-resolution/sensitivity(106 cells)Delayed assessment(weeks)Single biomarker(PE
83、T)NoninvasiveCT/MRI/PEThttps:/www.siemens-17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference6 of 56Clinical Imaging Low-resolution/sensitivity(106 cells)Delayed assessment(
84、weeks)Single biomarker(PET)Noninvasive6 weeks14 weeksBaseline2.7 cm4.3 cm1.5 cmG.Shroff,RadioGraphics22CT/MRI/PEThttps:/www.siemens-17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits
85、Conference7 of 56 Low-resolution/sensitivity(106 cells)Delayed assessment(weeks)Single biomarker(PET)NoninvasiveFluorescence Microscopy CT/MRI/PEThttps:/www.siemens- High-resolution/sensitivity(100 cells)Real-time(mins/hours)Multi biomarker Limited penetration depth(10mm)3 days after therapy500 mImm
86、une cell activationAll cellsNo therapyS.Qi,eLife1617.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference8 of 56Fluorescence Imager RequirementsMulti-cell type detection1.Implan
87、table deviceReal-time chronic monitoring2.Multicolor ImagingSmall form factorFully wireless operation at depthMulticellular resolutionMulticolor in-package illuminationCellsType IType IISensor17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in
88、Cancer Therapy 2024 IEEE International Solid-State Circuits Conference9 of 56Prior Chip-scale Fluorescence Sensors+Fully integrated Wired 1-color imagingS.Moazeni,ISSCC21LEDsFl imaging+optogeneticsDie-thinned chipComputational mask17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sens
89、or Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference10 of 56Prior Chip-scale Fluorescence Sensors+Filters for multiple colors Wired Spatial resolution+Fully integrated Wired 1-color imagingF.Aghlmand,ISSCC23S.Moazeni,ISSCC21LEDsFl imaging+opto
90、geneticsDie-thinned chipComputational maskChipBacteria cellsCMOS filters17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference11 of 56Prior Chip-scale Fluorescence SensorsC.Zhu
91、,TBioCAS23+RF communication No wireless charging Size+Filters for multiple colors Wired Spatial resolution+Fully integrated Wired 1-color imagingS.Moazeni,ISSCC21LEDsFl imaging+optogeneticsDie-thinned chipComputational maskCMOS filtersChipBacteria cellsF.Aghlmand,ISSCC232.3 cm0.9 cm17.3:A Fully Wire
92、less,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference12 of 56Multicolor IlluminationMicro laser diodes(LDs)DeCapsA Miniaturized Wireless Fluorescence Microscope Energy Storage10F,100F capsPiez
93、o Wireless power+communication Tissue loss:0.5-1dB/cm/MHzMulticolor Optical Frontend Filter Fiber optic plateASIC Wireless operation Image sensor Laser driverD.K.Piech,Nature BME20US17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer The
94、rapy 2024 IEEE International Solid-State Circuits Conference13 of 56SensorA Miniaturized Wireless Fluorescence Microscope 17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference
95、14 of 561 0Overlayed backscattered imageA Miniaturized Wireless Fluorescence Microscope Activatorimmune cellsRegulatorimmune cells500m17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuit
96、s Conference15 of 56Multicolor Fluorescence Microscopy 17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference16 of 56Multicolor Fluorescence Microscopy 17.3:A Fully Wireless,Mi
97、niaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference17 of 56Piezo Top-level System Block Diagram17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitori
98、ng in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference18 of 56Top-level System Block DiagramPower ManagementLaser DriverImaging Frontend and ReadoutDigital ControlMulticolorLDsStorage capsPiezo 17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for
99、Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference19 of 56System Architecture Charge-UpVCPVCSTOREVRECTVPIEZO+10 F100 F17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE Inter
100、national Solid-State Circuits Conference20 of 56System Architecture ConfigurationSwitchopenVCP920 KHz10 F100 FVCSTORE17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference21 of
101、 56System Architecture ImagingVCSTORE5.5V2.5V10 F100 F8VCP VCSTORE:5.52.5V17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference22 of 56Imaging State Laser Driver5-Bit DACVario
102、us PIV for different LDs0-115mA (LSB:3.8mA)programmed in set LD stateA1.8V1/12xDACOptical Power(mW)Voltage(V)Current(mA)Laser PIV Curves17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circu
103、its Conference23 of 56Imaging State Laser Driver6OD excitation rejectionInterference FilterFilterMulticolor Fluorescence Imaging FrontendASIC 3 color bandpass filter High attenuation of excitation Sensitive to angleM.Roschelle,Biomed.Opt.Express24Excitation Emission17.3:A Fully Wireless,Miniaturized
104、,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference30 of 56Multicolor Fluorescence Imaging FrontendInterference FilterFilterASIC 3 color bandpass filter High attenuation of excitation Sensitive to angleM.Ros
105、chelle,Biomed.Opt.Express24Excitation Emission17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference31 of 56 3 color bandpass filter High attenuation of excitation Sensitive to
106、 angleFOP improves resolution+Fiber Optic Plate(FOP)FOPInterference FilterFilter Ex:6OD rejection at 5 Em:35%transmittanceMulticolor Fluorescence Imaging FrontendASICM.Roschelle,Biomed.Opt.Express24510mExcitation Emission17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant
107、 for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference32 of 56ASIC Fabricated in TSMC 180nm17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circu
108、its Conference33 of 56Power Consumption17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference34 of 56Measurement Setup17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence
109、 Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference35 of 56Measurement Setup17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-St
110、ate Circuits Conference36 of 56Verification of Wireless Operation 5cmCharge-UpImaging+ReadoutBackscattering17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference37 of 56Verific
111、ation of Wireless Operation 5cmCharge-UpImaging+ReadoutBackscattering17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference38 of 56Verification of Wireless Operation 5cmCharge-
112、UpImaging+ReadoutBackscattering17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference39 of 56Image Sensor Performance Resolution5mm500mMicroscopeSensorUSAF resolution targetLin
113、e scan(125m Width)Resolution of 125m with 50%contrast17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference40 of 56Image Sensor Performance Noise5.4mVrms at TEXP=8ms17.3:A Full
114、y Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference41 of 56US Link Performance 5cmPower&Downlink 221mW/cm2US power density 31%of FDA limit(720mW/cm2)Data Uplink 11.52 kb/frame Bit erro
115、r rate 10-6 Data rate:13kbs Modulation index:5.64%17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference42 of 563-Color Fluorescent Bead Imaging 15m beads ILD=18.5 mA TEXP Gree
116、n:8 ms Red:16 ms NIR:16 ms500mNIR BeadsSensor ImagesRed BeadsGreen Beads17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference43 of 563-Color Fluorescent Bead Imaging 15m beads
117、 ILD=18.5 mA TEXP Green:8 ms Red:16 ms NIR:16 msNIR BeadsSensor ImagesRed BeadsGreen Beads500m500m17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference44 of 56Ex vivo Immunoth
118、erapy ExperimentTumorN.W.Cho,bioRxiv2217.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference45 of 56Ex vivo Immunotherapy ExperimentN.W.Cho,bioRxiv2217.3:A Fully Wireless,Minia
119、turized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference46 of 56Ex vivo Immunotherapy ExperimentCancer CellCD8 T-cell ActivatorNeutrophil RegulatorImmune Response CellCNeed to measure both activator and re
120、gulator populationsN.W.Cho,bioRxiv2217.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference47 of 56Resistant Model(AT3)Neutrophils(Regulators)Increase in densityIncrease in dens
121、ityCD8 T-cells(Activators)CD8a Fluorophore-probeCD11b Fluorophore-probe17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference48 of 56Responsive Model(B16F10)Higher Increase in
122、densityLower Increase in densityNeutrophils(Regulators)CD8 T-cells(Activators)CD8a Fluorophore-probeCD11b Fluorophore-probe17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conferenc
123、e49 of 56Comparison Resistant vs.ResponsiveResistant ResponsiveNeutrophil(regulators)%Increase in density(after treatment)17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference
124、50 of 56Comparison Resistant vs.ResponsiveResistant ResponsiveResistant ResponsiveNeutrophil(regulators)T-cell(activators)Multicolor imaging allows differential measurements%Increase in density(after treatment)17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-T
125、ime Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference51 of 56A 0.09cm3 Mechanical PackageMulticolor LDsICPiezoDeCapsStorage CapOptical FrontendA 0.09 cm3 mechanical assembly17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Tim
126、e Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference52 of 56Performance Summary:Implantable SystemMechanicalassembly 17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International So
127、lid-State Circuits Conference53 of 56Performance Summary:Imaging Frontend17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference54 of 56Performance Summary:Imaging Frontend17.3:
128、A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference55 of 56Summary The first fully wireless fluorescence image sensor for real-time chronic monitoring Power harvesting and bi-dir
129、ectional communication via US 3-color imaging for multi-cell-type detection via multi-bandpass optical frontend Demonstrating multiplexed measurements of immune response with ex vivo mouse experiments17.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for Real-Time Monito
130、ring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference56 of 56Acknowledgements AdvisorsMekhail Anwar,Vladimir Stojanovic and Ali NiknejadUC Berkeley and UCSFProf.Rikky MullerEfthymios Papageorgiou,Hossein Najafiaghdam,Mohammad Meraj GhanbariBiqi Rebekah Zhao,Eric Yang,Kingshu
131、k Daschowdhury,Jade PinkenburgAnwar lab students BSAC and BWRCTSMC Spitzer labFundingNIH DP2DE030713(Anwar)John V.Carbone Jr.Pancreatic Cancer Research Memorial FundDemonstration Session 2Tuesday 2/205:00-7:00 PMDS217.3:A Fully Wireless,Miniaturized,Multicolor Fluorescence Image Sensor Implant for R
132、eal-Time Monitoring in Cancer Therapy 2024 IEEE International Solid-State Circuits Conference57 of 56Please Scan to Rate Please Scan to Rate This PaperThis Paper17.4:Environmentally-Friendly Disposable Circuit and Battery System for Reducing Impact of E-Wastes 2024 IEEE International Solid-State Cir
133、cuits Conference1 of 23Environmentally-Friendly Disposable Circuit and Battery System for Reducing Impact of E-Waste N.Miura,H.Taguchi,K.Watanabe,M.Nohara,T.Makita,M.Tanabe,T.Wakimoto,S.Kumagai,H.Nosaka,A.Aratake,T.Okamoto,S.Watanabe,J.Takeya,T.KomatsuNippon Telegraph and Telephone(NTT),Atsugi,Japan
134、 University of Tokyo,Kashiwa,Japan PI-CRYSTAL Inc.,Kashiwa,Japan17.4:Environmentally-Friendly Disposable Circuit and Battery System for Reducing Impact of E-Wastes 2024 IEEE International Solid-State Circuits Conference2 of 23Outline Motivation Material Discussion Transistors and Battery System and
135、Circuit Design Experimental Results Summary Demo Session(17:0019:00)17.4:Environmentally-Friendly Disposable Circuit and Battery System for Reducing Impact of E-Wastes 2024 IEEE International Solid-State Circuits Conference3 of 23Impact of E-Waste on EnvironmentAmt.of sample.Only 5 g of commercial e
136、lectronics damaged the plant growth.Our circuit and battery did not damage the plant growth.Ckt.and batt.were crushed and mixed in soil.SeedsOur ckt.w/our batt.Commertial ckt.#1,2 w/Li coin batt.0.25 g5.00 g1.25 g3 weeksSoil w/o ckt.&batt.17.4:Environmentally-Friendly Disposable Circuit and Battery
137、System for Reducing Impact of E-Wastes 2024 IEEE International Solid-State Circuits Conference4 of 23Concept:Disposable ElectronicsConventionalThis studyAfter Use(E-Waste)Electrical devices everywhere.Harmful substances pollute the soil or water.Depletion of scarce elements causes economic-security
138、risk.No harmful substances or scarce elements in disposable cases.17.4:Environmentally-Friendly Disposable Circuit and Battery System for Reducing Impact of E-Wastes 2024 IEEE International Solid-State Circuits Conference5 of 23Todays Topics Suggest the materials for the disposable use cases.Non-har
139、mful substancesNon-scarce elements.Show the developed circuit and battery with the above materials.Demonstrate as a sensor system.17.4:Environmentally-Friendly Disposable Circuit and Battery System for Reducing Impact of E-Wastes 2024 IEEE International Solid-State Circuits Conference6 of 23Outline
140、Motivation Material Discussion Transistors and Battery System and Circuit Design Experimental Results Summary17.4:Environmentally-Friendly Disposable Circuit and Battery System for Reducing Impact of E-Wastes 2024 IEEE International Solid-State Circuits Conference7 of 23Harmful SubstancesAtmosphereS
141、oil(Plants)WaterEtc.Avoided restricted substances from being released into environment.Heavy metals such as cadmium and lead.Halogens such as fluorine and fluorine compounds.Over 2000 chemicals are restricted.17.4:Environmentally-Friendly Disposable Circuit and Battery System for Reducing Impact of
142、E-Wastes 2024 IEEE International Solid-State Circuits Conference8 of 23Non-Scarce Elements12345678910 11 12 13 1415 16 17 181HHe2LiBeBCNOFNe3 Na MgAlSiPSCl Ar4KCa ScTiVCr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr5 Rb SrYZr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb TeIXe6 Cs BaHf TaWRe Os IrPt Au Hg Tl Pb Bi Po At
143、Rn7 Fr RaRf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og Contain Only 7 kinds of elements(C,H,O,Al,S,Mg,N).Listed within top 20 elements in the earth s crust.17.4:Environmentally-Friendly Disposable Circuit and Battery System for Reducing Impact of E-Wastes 2024 IEEE International Solid-State Circuits
144、Conference9 of 23Outline Motivation Material Discussion Transistors and Battery System and Circuit Design Experimental Results Summary17.4:Environmentally-Friendly Disposable Circuit and Battery System for Reducing Impact of E-Wastes 2024 IEEE International Solid-State Circuits Conference10 of 23Ove
145、rview of Developed TransistorsC(Drain)C(Source)PolycycloolefinAlOxC(Gate)n,p30 m Transistors formed electrodes and wire using only carbon materials 6.Removed regulated substances such as halogens from insulator.Designed as a complementary circuit to reduce power consumption.60-70 nm60 nmPhoto30 nm 1
146、0 nmSubstraten-type Tr.(L/W=100 m/300 m)CC17.4:Environmentally-Friendly Disposable Circuit and Battery System for Reducing Impact of E-Wastes 2024 IEEE International Solid-State Circuits Conference11 of 23Performance of Developed TFT10-1210-1110-1010-910-810-710-6Drain Current A1050-5-10Gate Voltage
147、 V8006004002000Sqrt Drain Current x10-6 A1/210-13 10-11 10-9 10-7 Drain Current A-8-404Gate Voltage V1.00.80.60.40.20.0Sqrt Drain Current x10-3 A1/2Sat.VD=10 Veff,e:0.26 cm2V1s1eff,h:2.9 cm2V1s1n-typep-typeSat.VD=10 V17.4:Environmentally-Friendly Disposable Circuit and Battery System for Reducing Im
148、pact of E-Wastes 2024 IEEE International Solid-State Circuits Conference12 of 23Overview of Developed Battery1 CellElectrodeSeparator+electrolytic74 mm6 mm(CH3COO)2Mg+-CMgCellulose4 mmO2 (Air)Moisture Halogen-free carbon electrode made from bacterial cellulose.Made only of soil-fertilizer elements(C
149、,H,O,Mg).Generate electrical power when obtaining moisture with air.Based on a magnesium-air battery.17.4:Environmentally-Friendly Disposable Circuit and Battery System for Reducing Impact of E-Wastes 2024 IEEE International Solid-State Circuits Conference13 of 23Performance of Developed Battery0510
150、1504812Voltage(V)100 ARequirement0 5 10 15 0 1 2 3 Elapsed Time(hour)Voltage(V)100 AThe num.of cells connected in series Organic circuit required more than 10 V to operate.12-series connected cells were fabricated to meet requirement.Maintained more than 10 V at a current of 100 uA for 3 hours.17.4:
151、Environmentally-Friendly Disposable Circuit and Battery System for Reducing Impact of E-Wastes 2024 IEEE International Solid-State Circuits Conference14 of 23Outline Motivation Material Discussion Transistors and Battery System and Circuit Design Experimental Results Summary17.4:Environmentally-Frie
152、ndly Disposable Circuit and Battery System for Reducing Impact of E-Wastes 2024 IEEE International Solid-State Circuits Conference15 of 23Moisture-Sensor DeviceSensorcircuitPower on3-bit IDDetected!(High)MoistureSpeaker Battery acts as both power source and moisture sensor.Sensor circuit transmits i
153、ts own ID when moisture is detected.Signal is transmitted with ASK modulation by sound wave.(For Demo)17.4:Environmentally-Friendly Disposable Circuit and Battery System for Reducing Impact of E-Wastes 2024 IEEE International Solid-State Circuits Conference16 of 23Sensor-Circuit Architecture Most pa
154、rts were designed as digital because of variations of TFTs.4-bits parallel inputs converted to serial and modulated.Clock and carrier freq.were designed to be around 10 and 100 Hz.Osc.(Carrier)Osc.(CLK)P/SCount.Sel.Mod.OutfclkfcDigital design3-bit IDDetectedFixed to Vdd or GND17.4:Environmentally-Fr
155、iendly Disposable Circuit and Battery System for Reducing Impact of E-Wastes 2024 IEEE International Solid-State Circuits Conference17 of 23Each Block of Sensor Circuit Ring oscillator based OSCs because materials of resistor and inductor have difficulty meeting the requirements.Gray-code counter to
156、 reduce the number of Tr.Designed Sel.with transfer gates to reduce the number of Tr.fclkC0 C1C2C3fC3C2C1C0InputsOSC(Clock&Carrier)Count.Sel.17.4:Environmentally-Friendly Disposable Circuit and Battery System for Reducing Impact of E-Wastes 2024 IEEE International Solid-State Circuits Conference18 o
157、f 23Outline Motivation Material Discussion Transistors and Battery System and Circuit Design Experimental Results Summary17.4:Environmentally-Friendly Disposable Circuit and Battery System for Reducing Impact of E-Wastes 2024 IEEE International Solid-State Circuits Conference19 of 23Experimental Set
158、up Battery and sensor circuit were connected through bread board.Sensor circuit was divided into 6 chips.The waveform of each chip is displayed on the oscilloscope.OscilloscopeSensor CircuitBatteryBreadBoardMoisturePower onOsc.(Clock)Osc.(Carrier)FF x 2Sel.Mod.Will appear in the demo session.17.4:En
159、vironmentally-Friendly Disposable Circuit and Battery System for Reducing Impact of E-Wastes 2024 IEEE International Solid-State Circuits Conference20 of 23Experimental Results Battery outputted stable voltage after detecting moisture(a).Sensor circuit successfully outputted ASK modulated signal(d).
160、Developed device was able to operate as moisture-sensor system.18901890Time(s)016801680Volt.(V)Volt.(V)Battery outputClock signalOutput from P/SModulated signalVolt.(V)Volt.(V)“0”“1”“0”“1”“0”“1”“0”“1”“0”“1”“0”“1”1.0Time(s)01.0(a)(b)(c)(d)17.4:Environmentally-Friendly Disposable Circuit and Battery S
161、ystem for Reducing Impact of E-Wastes 2024 IEEE International Solid-State Circuits Conference21 of 23Performance(6 chips)Carrier frequency Hz140Clock frequency HzVoltage VCurrent ADate rate bpsNumber of ID.6.7 14.8-15.63-208ASK Modulation6.7 Obtained with sensor circuit divided into 6 chips17.4:Envi
162、ronmentally-Friendly Disposable Circuit and Battery System for Reducing Impact of E-Wastes 2024 IEEE International Solid-State Circuits Conference22 of 23Summary Problems of e-waste:pollution,scarce element depletion.Materials that reduced effect on the environments were discussed.Transistors and ba
163、ttery that meet material requirements were developed.Disposable circuit and battery system were demonstrated with moisture-sensor devices.Hope that you are also interested in the environmentally-friendly circuit.17.4:Environmentally-Friendly Disposable Circuit and Battery System for Reducing Impact
164、of E-Wastes 2024 IEEE International Solid-State Circuits Conference23 of 23Thank You17.4:Environmentally-Friendly Disposable Circuit and Battery System for Reducing Impact of E-Wastes 2024 IEEE International Solid-State Circuits Conference24 of 23Please Scan to Rate Please Scan to Rate This PaperThi
165、s Paper17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference1 of 32A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop DeadtimeControl and ZCS Contro
166、l Achieving 99.76%Charge Recovery EfficiencyYingying Fan*,Yuxuan Liu*,Gerald Topalli,Roy Lycke,Lan Luan,Chong Xie,Taiyun ChiRice University,Houston,TX17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE
167、 International Solid-State Circuits Conference2 of 32Outline Introduction Design and Optimization of Mini-Coil Implementation of Mini-Coil Driver Chip Measurement and in-vivo Demonstration17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.7
168、6%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference3 of 32Scalp BoneDura MaterPia MaterBrainArachnoid MaterGlial ScarsElectrical StimulationIntracortical Microstimulation Electrode&tissue in contact Glial scar formation Encapsulation of electrodesR.Lycke et al.Cell R
169、ep.202317.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference4 of 32Magnetic StimulationMagnetic field CoilElectrical fieldIntracranial fieldPrecentral gyrusP
170、yramidal axonMicroscopic responseLocal depolarisationJ Non-invasive Power hungry Bulky coilTranscranial Magnetic Stimulation(TMS)Emerging Microcoil StimulationJ Miniaturized Penetrate dura S.W.Lee et al.Sci.Adv.2016(Dura removed)17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadti
171、me Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference5 of 32Proposed Mini-coil Magnetic Stimulation(MCMS)Proposed Mini-Coil Magnetic StimulatorMagnetic fieldCurrentJ Isolated from tissue Skull Burr Hole Diameter 1.4cm J Above du
172、ra Less invasiveness than intracortical implantsDriver IC CSTGCoil1cm0.5cmDuraCodman perforator17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference6 of 32Co
173、nventional TMS Driver TopologiesIncreased charge recovery efficiency REC&Enhanced stimulation efficacy No charge recovery low REC LC resonance for sin.wave limited tuning range of pulse widthCharge recovery REC 90%J Efficient at depolarizing neurons Two caps need charge transfer Nearly TriangularRLL
174、C1Q11 ILVC1Q2C22 VC2VLILQ1 onQ2 off Q1 offQ2 onQ1 offQ2 offTPWBiphasic SinusoidalVLRLLCQ ILVCDMonophasic SinusoidalRLLCQ ILVCRDVLTPWILQ on D offQ onD onQ offD offILQ onD off Q offD onQ offD offTPWB.He,Neural Engineering,202017.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Co
175、ntrol and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference7 of 32Proposed Architecture Q2Q4Q1Q3CSTGHVSSVCENQ1ENQ3ENQ2ENQ4ILVMIDJ Only one storage capacitor17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control a
176、nd ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference8 of 32Q2Q4Q1Q3CSTGHVSSVCENQ1ENQ3ENQ2ENQ4ILVMIDProposed Architecture Q2 onQ3 on VCVLILQ1 onQ4 onOffREC 99%J 17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Contr
177、ol and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference9 of 32Q2Q4Q1Q3CSTGHVSSVCENQ1ENQ3ENQ2ENQ4ILVMIDProposed Architecture Q2 onQ3 on VCVLILQ1 onQ4 onOffREC 99%J 17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime C
178、ontrol and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference10 of 32Proposed Architecture Q2Q4Q1Q3CSTGTiming Signal GenerationHVSSCLKSTIMDVSSDVDDVCPulse GenZCS CtrlDeadtime CtrlENQ1ENQ3ENQ2ENQ4ENQ1-Q4ILVMID17.5:A 24V Mini-Coil Magnetic Neu
179、ral Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference11 of 32Proposed Architecture Q2Q4Q1Q3CSTGTiming Signal GenerationHVSSCLKSTIMDVSSDVDDVCPulse GenZCS CtrlDeadtime CtrlENQ1ENQ3ENQ2ENQ4ENQ1
180、-Q4ILVMIDVQ1IQ1VQ1IQ1 Switching loss(PSW)OnOffOnOffw/o Zero Current Switching(ZCS)w/ZCSIL,OFFJ No PSW 17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference12
181、 of 32Proposed Architecture Q2Q4Q1Q3CSTGTiming Signal GenerationHVSSCLKSTIMDVSSDVDDVCPulse GenZCS CtrlDeadtime CtrlENQ1ENQ3ENQ2ENQ4ENQ1-Q4ILVMIDENQ2 ENQ4 VMIDDT 0ILQ4Q2ILVFBody-diode conduction loss(PBD)0VMIDDeadtime(DT)minimized by DT controlJ VQ1IQ1VQ1IQ1 Switching loss(PSW)OnOffOnOffw/o Zero Curr
182、ent Switching(ZCS)w/ZCSIL,OFFJ No PSW 17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference13 of 32Outline Introduction Design and Optimization of Mini-Coil
183、Implementation of Mini-Coil Driver Chip Measurement and in-vivo Demonstration17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference14 of 32Coil-circuit Co-opt
184、imization Optimization constraints:Physical size to fit in skull burr hole Stimulation efficacy Optimal mini-coil geometry for(i)minimal power loss,(ii)compact size,and(iii)sufficient penetration depth 1cm 0.5cmBased on data inW.Jiang et al.J.Neural Eng.2023Codman perforator1.4cm0.7cmETTH=410-4 Vs/m
185、 17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference15 of 32Coil-circuit Co-optimization Goal:minimizing coil loss(mainly PRL)IL(t)Pulse width(TPW)Period(1
186、/fSTIM)dIL(t)dt=VL(t)LDuty cycle(D)=TPW fSTIMSlopeVLTPWLIrms Stimulation pattern:pulse traint0=Irms2 RL DCoil resistive loss(PRL)17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-
187、State Circuits Conference16 of 32Coil-circuit Co-optimizationCOMSOL model of multi-layer solenoid coilFixed solenoid diameter=1cmd*N turns,H=NdrMagnetic Corez layersCuAWG:American wire gauge,Smaller AWG thicker wire*d(mm)=0.127 92 3936-AWG Goal:minimizing coil loss(mainly PRL)Obtain their inductance
188、(L),resistance(RL),electrical field(E)Sweep d,N and in COMSOLPlot PRL under size and ETTH constraints(H 0.5cm and ETTH 4 10-4 V s/m)IL(t)Pulse width(TPW)Period(1/fSTIM)dIL(t)dt=VL(t)LDuty cycle(D)=TPW fSTIMSlopeVLTPWLIrms Stimulation pattern:pulse traint0=Irms2 RL DCoil resistive loss(PRL)17.5:A 24V
189、 Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference17 of 32Coil-circuit Co-optimizationPRL VLL()2ETTHE()RL3Normalized PRL(=1)13579 11 13 15 17 19Normalized PRL(=4)13
190、579 11 13 15 17 192423222120H 0.5cm d(AWG)NN2423222120d(AWG)020dBLower loss PRL first decreases,then increases With fixed d,larger NLarger L but smaller E asWith fixed N,thicker d Smaller RLSmaller PRLH 0.5cm Optimal coil geometry17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadt
191、ime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference18 of 32Outline Introduction Design and Optimization of Mini-Coil Implementation of Mini-Coil Driver Chip Measurement and in-vivo Demonstration17.5:A 24V Mini-Coil Magnetic N
192、eural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference19 of 32Generation of H-bridge Timing ControlH-bridge DriverQ2Q4Q1Q3CSTGHVSSDVSSVCENQ1ENQ3ENQ2ENQ4ILVMIDLSGDTiming Signal GenerationCLK
193、STIMDVDDPulse GenZCS CtrlDT CtrlEN1,2ENQ1-Q4 Wide tuning range for the pulse width(TPW)from 15 to 200 s17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference2
194、0 of 32Deadtime ControlONQ14VTHENQ4OFFQ23VREF,OFFVMIDDLLEN1EN2OFFQ23ONQ14T1*T2*DTENActual DT 0 Minimized by DLLVMIDVREF,OFFENQ4VTHActual turning off of Q2,3Actual turning on of Q1,4HVDDDead time ControlENQ2 ENQ4 VMIDDT 0ILQ4Q2ILVFBody-diode conduction loss(PBD)0VMIDDeadtime(DT)minimized by DT contro
195、lJ 17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference21 of 32Deadtime ControlONQ14VTHENQ4OFFQ23VREF,OFFVMIDDLLEN1EN2OFFQ23ONQ14T1*T2*DTENActual DT 0 Minim
196、ized by DLLVMIDVREF,OFFENQ4VTHQ2,3 not off yet Actual turning off of Q2,3Q1,4 not on yet Actual turning on of Q1,4HVDDDead time ControlENQ2 ENQ4 VMIDDT 0ILQ4Q2ILVFBody-diode conduction loss(PBD)0VMIDDeadtime(DT)minimized by DT controlJ 17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop
197、 Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference22 of 32Dead time Control VCDL provide 1-20 ns tunable delay Closed-loop DTENQ2 ENQ4 VMIDDT 0ILQ4Q2ILVFBody-diode conduction loss(PBD)0VMIDDeadtime(DT)minimized by DT c
198、ontrolJ 17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference23 of 32211EN2FLAGZCSDVDDCS1CS2ENcompVGS,M1M1SWINVMID(ZCSIN)1 2 ENcomp12 sampling phase1 auto-ze
199、roing phaseZCS Detector Use an auto-zeroing comparator to enable accurate detection of this zero-crossing.Q4Q2VMIDI17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits
200、 Conference24 of 32ZCS Detector2211EN2FLAGZCSDVDDCS1CS2ENcompVGS,M1M1SWINVMID(ZCSIN)Isolate SWIN&CS10V022Dummy Switch11False turning on of SWIN11 Isolated switches and dummy switches to improve the accuracy ZCS ControllerDVDDPW2ZCS Detector0FLAGZCSRDQFalling Edge of EN2ENZCStI(t)With isolation+dummy
201、 switchConventional auto-zeroing comparatorSimulated ZCS detector output 40nsFlagZCSIdealIL(t)0169nsFlagZCSIdealIL(t)0t17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circ
202、uits Conference25 of 32Outline Introduction Design and Optimization of Mini-Coil Implementation of Mini-Coil Driver Chip Measurement and in-vivo Demonstration17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2
203、024 IEEE International Solid-State Circuits Conference26 of 32Chip Micrograph TSMC 180nm BCD process17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference27 o
204、f 32Characterization Timing Waveforms Nearly triangular waveform with programmable pulse widths17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference28 of 32C
205、haracterization DT ControlWaveforms of DT ControlOpen-loopClosed-loopEN1EN2EN1EN2EN1EN201.02.03.001020VCTRL VDTEN nsSim.Meas.22.4ns10.9ns5.5nsVCTRL02.6V1.9VEN1EN2DTENt17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Eff
206、iciency 2024 IEEE International Solid-State Circuits Conference29 of 32Characterization Charge RecoveryCSTG 162F100 pulsesREC=99.76%TPW=40s24.05V20.34V18.08V13.96VEN119.95V15.08V10.01V9.43V5.13V4.89VREC=99.80%REC=99.84%REC=99.88%REC=99.90%VCREC=CSTG V2 at the end of each pulse CSTG V2 at the beginni
207、ng of each pulse RECis 99%with a 24-V stimulation voltage17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference30 of 32In-vivo Demonstration Fluorescence incr
208、ease in somatosensory cortex when stim on17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference31 of 32Comparison Table17.5:A 24V Mini-Coil Magnetic Neural St
209、imulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference32 of 32Acknowledgment GlobalFoundries for chip fabrication Keysight for measurement equipment support Members of the Rice Integrated Systems a
210、nd Electromagnetics(RISE)Lab and Yanqiao Li for helpful technical discussions17.5:A 24V Mini-Coil Magnetic Neural Stimulator with Closed-Loop Deadtime Control and ZCS Control Achieving 99.76%Charge Recovery Efficiency 2024 IEEE International Solid-State Circuits Conference33 of 32Please Scan to Rate
211、 Please Scan to Rate This PaperThis Paper17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference1 of 41Fully Integrated CMOS Ferrofluidic Biomolecular Processing
212、Platform with On-Chip Droplet-Based Manipulation,Multiplexing and SensingDongwon Lee1*,Kyung-Sik Choi1*,Fuze Jiang1*,Hangxing Liu1,Doohwan Jung2,Ying Kong1,Marco Saif1,Zhikai Huang1,Jing Wang1,and Hua Wang11ETH Zurich,Zurich,Switzerland,2Now at Qualcomm,Santa Clara,CA,*Equally Credited Authors(ECAs)
213、17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference2 of 41Outline Introduction on CMOS-Fluidic Integrated System CMOS Ferrofluidic Biomolecular Processing Pla
214、tform Measurement Results Conclusions17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference3 of 41Outline Introduction on CMOS-Fluidic Integrated System CMOS Fer
215、rofluidic Biomolecular Processing Platform Measurement Results Conclusions17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference4 of 41IntroductionF.K.Balagadde,
216、Science(2005)H.Nyein,Sci Adv(2019)A.Singhal,Analytical Chem(2010)Microfluidic has been used for manipulation of very small quantities of samples.Microfluidic can be used for diagnostics,single-cell analysis,and sweat sensors.17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform wi
217、th On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference5 of 41IntroductionY.T.Hsiao,VLSI(2023)W.Yu,Science Robotics(2020)H.Norian,VLSI(2012)Pneumatic Microfluidics(Di)electrowettingFerrofluidicsExternal pump requiredComplex packagingLimi
218、ted number of channelNo external pumpComplex substrate requiredSensitive to surface tensionHigh voltage(30V)requiredNo external pumpNo substrate requirementExternal magnet and magneticparticlesrequired17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based
219、 Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference6 of 41IntroductionY.T.Hsiao,VLSI(2023)W.Yu,Science Robotics(2020)H.Norian,VLSI(2012)Pneumatic Microfluidics(Di)electrowettingFerrofluidicsExternal pump requiredComplex packagingLimited number of channelNo
220、external pumpComplex substrate requiredSensitive to surface tensionHighvoltage(30V)requiredNo external pumpNo substrate requirementExternal magnet and magneticparticlesrequired17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexin
221、g,and Sensing 2024 IEEE International Solid-State Circuits Conference7 of 41No external pumpNo substrate requirementExternal magnet and magneticparticlesrequiredIntroductionY.T.Hsiao,VLSI(2023)W.Yu,Science Robotics(2020)H.Norian,VLSI(2012)Pneumatic Microfluidics(Di)electrowettingFerrofluidicsExterna
222、l pump requiredComplex packagingLimited number of channelNo external pumpComplex substrate requiredSensitive to surface tensionHighvoltage(30V)required17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE I
223、nternational Solid-State Circuits Conference8 of 41Existing Ferrofluidic PlatformH.Lin.Nature(2022)No integrated sensor modalityExternal magnet requiredLimited demonstrated on CMOSW.Yu,Science Robotics(2020)17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet
224、-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference9 of 41Outline Introduction on CMOS-Fluidic Integrated System CMOS Ferrofluidic Biomolecular Processing Platform Measurement Results Conclusions17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Pro
225、cessing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference10 of 41CMOS Biomolecular Processing Platform Integrated functionsFerrofluidicsMagnetic sensingElectrochemical potentiostatLocal heater and temp sensor17.6 Fully I
226、ntegrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference11 of 41Purpose of Integrated Function Magnetic sensingMeasure the magnetic bead concentration and quantitatively deter
227、mine the required additional beads.Ferrofluidic controlMove the sample to the desired position.Mix multiple droplet samples.17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Ci
228、rcuits Conference12 of 41Purpose of Integrated Function In-pixel EC potentiostatElectrochemically process and sense samples In-pixel heater and temp sensorRegulate the local temperature environment.17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Ma
229、nipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference13 of 41System Architecture and Circuit SchematicLC Oscillator-based Magnetic SensorIn-Pixel Three-Electrode Electrochemical PotentiostatFerrofluidic Pixel and COMSOL Magnetic SimulationIn-Pixel Temperature Se
230、nsor and HeaterWEVDDAuPtPt4BLSBRECEVREFPotentiostatTIA+BUFOUT12B DividerIleak12B Temp.Sensor4B LSBHeater4BHeater12BTemp.SensorBowl-Shape Sensing InductorMagneticBeadConstructive B-field-450(m)450-450450-450450150-50(m)10-2 10-5 10-4 Top viewSide viewFerrofluidicinductor10-3 Magnetic SensorIferro IN(
231、T)600 m600 mPt CEPt REAu WE400 mClockwise Iferro Clockwise Iferro Clockwise Iferro IDC,heatRSTElectro-Thermal FeedbackFerrofluidic/Electrochemical Pixels with Thermal Regulators CMOS Ferrofluidic Platform LC-osc magnetic sensorFerrofluidic coilIn-pixel EC potentiostatIn-pixel leakage-osctemp sensorI
232、n-pixel heater17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference14 of 41System Architecture and Circuit SchematicLC Oscillator-based Magnetic SensorIn-Pixel
233、Three-Electrode Electrochemical PotentiostatFerrofluidic Pixel and COMSOL Magnetic SimulationIn-Pixel Temperature Sensor and HeaterWEVDDAuPtPt4BLSBRECEVREFPotentiostatTIA+BUFOUT12B DividerIleak12B Temp.Sensor4B LSBHeater4BHeater12BTemp.SensorBowl-Shape Sensing InductorMagneticBeadConstructive B-fiel
234、d-450(m)450-450450-450450150-50(m)10-2 10-5 10-4 Top viewSide viewFerrofluidicinductor10-3 Magnetic SensorIferro IN(T)600 m600 mPt CEPt REAu WE400 mClockwise Iferro Clockwise Iferro Clockwise Iferro IDC,heatRSTElectro-Thermal FeedbackFerrofluidic/Electrochemical Pixels with Thermal Regulators CMOS F
235、errofluidic Platform LC-osc magnetic sensorFerrofluidic coilIn-pixel EC potentiostatIn-pixel leakage-osctemp sensorIn-pixel heater17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-St
236、ate Circuits Conference15 of 41System Architecture and Circuit SchematicLC Oscillator-based Magnetic SensorIn-Pixel Three-Electrode Electrochemical PotentiostatFerrofluidic Pixel and COMSOL Magnetic SimulationIn-Pixel Temperature Sensor and HeaterWEVDDAuPtPt4BLSBRECEVREFPotentiostatTIA+BUFOUT12B Div
237、iderIleak12B Temp.Sensor4B LSBHeater4BHeater12BTemp.SensorBowl-Shape Sensing InductorMagneticBeadConstructive B-field-450(m)450-450450-450450150-50(m)10-2 10-5 10-4 Top viewSide viewFerrofluidicinductor10-3 Magnetic SensorIferro IN(T)600 m600 mPt CEPt REAu WE400 mClockwise Iferro Clockwise Iferro Cl
238、ockwise Iferro IDC,heatRSTElectro-Thermal FeedbackFerrofluidic/Electrochemical Pixels with Thermal Regulators CMOS Ferrofluidic Platform LC-osc magnetic sensorFerrofluidic coilIn-pixel EC potentiostatIn-pixel leakage-osctemp sensorIn-pixel heater17.6 Fully Integrated CMOS Ferrofluidic Biomolecular P
239、rocessing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference16 of 41System Architecture and Circuit SchematicLC Oscillator-based Magnetic SensorIn-Pixel Three-Electrode Electrochemical PotentiostatFerrofluidic Pixel and C
240、OMSOL Magnetic SimulationIn-Pixel Temperature Sensor and HeaterWEVDDAuPtPt4BLSBRECEVREFPotentiostatTIA+BUFOUT12B DividerIleak12B Temp.Sensor4B LSBHeater4BHeater12BTemp.SensorBowl-Shape Sensing InductorMagneticBeadConstructive B-field-450(m)450-450450-450450150-50(m)10-2 10-5 10-4 Top viewSide viewFe
241、rrofluidicinductor10-3 Magnetic SensorIferro IN(T)600 m600 mPt CEPt REAu WE400 mClockwise Iferro Clockwise Iferro Clockwise Iferro IDC,heatRSTElectro-Thermal FeedbackFerrofluidic/Electrochemical Pixels with Thermal Regulators CMOS Ferrofluidic Platform LC-osc magnetic sensorFerrofluidic coilIn-pixel
242、 EC potentiostatIn-pixel leakage-osctemp sensorIn-pixel heater17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference17 of 41System Architecture and Circuit Schem
243、aticLC Oscillator-based Magnetic SensorIn-Pixel Three-Electrode Electrochemical PotentiostatFerrofluidic Pixel and COMSOL Magnetic SimulationIn-Pixel Temperature Sensor and HeaterWEVDDAuPtPt4BLSBRECEVREFPotentiostatTIA+BUFOUT12B DividerIleak12B Temp.Sensor4B LSBHeater4BHeater12BTemp.SensorBowl-Shape
244、 Sensing InductorMagneticBeadConstructive B-field-450(m)450-450450-450450150-50(m)10-2 10-5 10-4 Top viewSide viewFerrofluidicinductor10-3 Magnetic SensorIferro IN(T)600 m600 mPt CEPt REAu WE400 mClockwise Iferro Clockwise Iferro Clockwise Iferro IDC,heatRSTElectro-Thermal FeedbackFerrofluidic/Elect
245、rochemical Pixels with Thermal Regulators CMOS Ferrofluidic Platform LC-osc magnetic sensorFerrofluidic coilIn-pixel EC potentiostatIn-pixel leakage-osctemp sensorIn-pixel heater17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplex
246、ing,and Sensing 2024 IEEE International Solid-State Circuits Conference18 of 41Simple Physics of Ferrofluidic ControlLC Oscillator-based Magnetic SensorIn-Pixel Three-Electrode Electrochemical PotentiostatFerrofluidic Pixel and COMSOL Magnetic SimulationIn-Pixel Temperature Sensor and HeaterWEVDDAuP
247、tPt4BLSBRECEVREFPotentiostatTIA+BUFOUT12B DividerIleak12B Temp.Sensor4B LSBHeater4BHeater12BTemp.SensorBowl-Shape Sensing InductorMagneticBeadConstructive B-field-450(m)450-450450-450450150-50(m)10-2 10-5 10-4 Top viewSide viewFerrofluidicinductor10-3 Magnetic SensorIferro IN(T)600 m600 mPt CEPt REA
248、u WE400 mClockwise Iferro Clockwise Iferro Clockwise Iferro IDC,heatRSTElectro-Thermal FeedbackFerrofluidic/Electrochemical Pixels with Thermal RegulatorsMagnetic force=0 Frictional force=Dragforce=31+2/31+/Driving condition 0Maximum speed 0 +31+2/31+/Variable:FM:magnetic force,VM:ferrofluidic volum
249、e,:magnetic susceptibility,0:permeability,B:magnetic flux density17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference19 of 41Simple Physics of Ferrofluidic Con
250、trolLC Oscillator-based Magnetic SensorIn-Pixel Three-Electrode Electrochemical PotentiostatFerrofluidic Pixel and COMSOL Magnetic SimulationIn-Pixel Temperature Sensor and HeaterWEVDDAuPtPt4BLSBRECEVREFPotentiostatTIA+BUFOUT12B DividerIleak12B Temp.Sensor4B LSBHeater4BHeater12BTemp.SensorBowl-Shape
251、 Sensing InductorMagneticBeadConstructive B-field-450(m)450-450450-450450150-50(m)10-2 10-5 10-4 Top viewSide viewFerrofluidicinductor10-3 Magnetic SensorIferro IN(T)600 m600 mPt CEPt REAu WE400 mClockwise Iferro Clockwise Iferro Clockwise Iferro IDC,heatRSTElectro-Thermal FeedbackFerrofluidic/Elect
252、rochemical Pixels with Thermal RegulatorsMagnetic force=0 Frictional force=Dragforce=31+2/31+/Driving condition 0Maximum speed 0 +31+2/31+/Variable:Ff:frictional force,Kf:friction constant,Rb:radius of contact area,oil:viscosity of oil,U:velocity17.6 Fully Integrated CMOS Ferrofluidic Biomolecular P
253、rocessing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference20 of 41Simple Physics of Ferrofluidic ControlLC Oscillator-based Magnetic SensorIn-Pixel Three-Electrode Electrochemical PotentiostatFerrofluidic Pixel and COMS
254、OL Magnetic SimulationIn-Pixel Temperature Sensor and HeaterWEVDDAuPtPt4BLSBRECEVREFPotentiostatTIA+BUFOUT12B DividerIleak12B Temp.Sensor4B LSBHeater4BHeater12BTemp.SensorBowl-Shape Sensing InductorMagneticBeadConstructive B-field-450(m)450-450450-450450150-50(m)10-2 10-5 10-4 Top viewSide viewFerro
255、fluidicinductor10-3 Magnetic SensorIferro IN(T)600 m600 mPt CEPt REAu WE400 mClockwise Iferro Clockwise Iferro Clockwise Iferro IDC,heatRSTElectro-Thermal FeedbackFerrofluidic/Electrochemical Pixels with Thermal RegulatorsMagnetic force=0 Frictional force=Dragforce=31+2/31+/Driving condition 0Maximu
256、m speed 0 +31+2/31+/Variable:Fdrag:drag force,U:velocity,oil:viscosity of oil,ff:viscosity of ferrofluidic,D:diameter of droplet17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-Stat
257、e Circuits Conference21 of 41Simple Physics of Ferrofluidic ControlLC Oscillator-based Magnetic SensorIn-Pixel Three-Electrode Electrochemical PotentiostatFerrofluidic Pixel and COMSOL Magnetic SimulationIn-Pixel Temperature Sensor and HeaterWEVDDAuPtPt4BLSBRECEVREFPotentiostatTIA+BUFOUT12B DividerI
258、leak12B Temp.Sensor4B LSBHeater4BHeater12BTemp.SensorBowl-Shape Sensing InductorMagneticBeadConstructive B-field-450(m)450-450450-450450150-50(m)10-2 10-5 10-4 Top viewSide viewFerrofluidicinductor10-3 Magnetic SensorIferro IN(T)600 m600 mPt CEPt REAu WE400 mClockwise Iferro Clockwise Iferro Clockwi
259、se Iferro IDC,heatRSTElectro-Thermal FeedbackFerrofluidic/Electrochemical Pixels with Thermal RegulatorsFM:magnetic force,Ff:frictional force,Fdrag:drag force,VM:ferrofluidic volume,:magnetic susceptibility,0:permeability,B:magnetic flux density,Kf:friction constant,D:diameter of dropletRb:radius of
260、 contact area,oil:viscosity of oil,U:velocity,ff:viscosity of ferrofluidic.Magnetic force=0 Frictional force=Dragforce=31+2/31+/Driving condition 0Maximum speed 0 +31+2/31+/0.10.2 mm/s17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Mul
261、tiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference22 of 41Outline Introduction on CMOS-Fluidic Integrated System CMOS Ferrofluidic Biomolecular Processing Platform Measurement Results Conclusions17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with
262、On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference23 of 41Chip MicrophotographTest StructureCircuitsAfter Post-processingPackaged Chip Image and Chip MicrophotographBefore Post-processing5 mm3.6 mmPackaged Chip600 mPt CEPt REAu WE600 m
263、CMOS ferrofluidic biomolecular processing platform is implemented in GF 45-nm CMOS SOI.Gold and platinum are deposited via in-house post-processing17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE Inter
264、national Solid-State Circuits Conference24 of 41Measurement Setup Measurements are conducted under the microscope.External Oscilloscope/Function Gen/IR camera are usedMagnetic Sensor Measurement SetupMeasurement SetupOscilloscope(UXR0104A)Electrochemical Sensor Measurement SetupTemperature Regulator
265、 Measurement SetupDUT50 TerminationLabviewUSB-1616DUTUSB-1616Function Generator(81160A)Electrochemical SignalLabviewDUTUSB-1616LabviewThermal IR CameraMagnetic Sensor Measurement SetupMeasurement SetupOscilloscope(UXR0104A)Electrochemical Sensor Measurement SetupTemperature Regulator Measurement Set
266、upDUT50 TerminationLabviewUSB-1616DUTUSB-1616Function Generator(81160A)Electrochemical SignalLabviewDUTUSB-1616LabviewThermal IR CameraMagnetic Sensor Measurement SetupMeasurement SetupOscilloscope(UXR0104A)Electrochemical Sensor Measurement SetupTemperature Regulator Measurement SetupDUT50 Terminat
267、ionLabviewUSB-1616DUTUSB-1616Function Generator(81160A)Electrochemical SignalLabviewDUTUSB-1616LabviewThermal IR Camera17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuit
268、s Conference25 of 41Ferrofluidic ControlMagnetic Sensor MeasurementFerrofluidic Droplet Movement ControlMagneticBeadOffset Frequency(Hz)Leff=L0+LC=C0C=C0f0=2 L0C01f f0(1-2L0L)1E+21E+31E+41E+51E+6-140-120-100-80-60-40-200Phase Noise(dBc/Hz)Ferrofluidic Droplet ControlB-fieldY-axis Ferrofluidic Drople
269、t Movement Control600 nLFerrofluidic600 nLFerrofluidic-46.1 dBc/Hz 1 kHz-124.1 dBc/Hz 1 MHzLeff=L0Magnetic Sensor Phase NoiseFerrofluidicdropletX-axis Ferrofluidic Droplet Movement ControlTimeTimeFreq.Shift(lfl/f0)Magnetic Bead Concentration(Beads/nL)Magnetic Sensing ResultsDI water Freq.Shift832128
270、5120.0000.0040.0080.0120.016 Measured Freq Shift0 sec2 sec4 sec6 sec0 sec3 sec6 sec9 secOil suspensionOil suspensionOil suspensionOSC Freq ShiftTimeTime 600-nL ferrofluidic can be moved to the desired direction17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Drop
271、let-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference26 of 41Magnetic SensingMagnetic Sensor MeasurementFerrofluidic Droplet Movement ControlMagneticBeadOffset Frequency(Hz)Leff=L0+LC=C0C=C0f0=2 L0C01f f0(1-2L0L)1E+21E+31E+41E+51E+6-140-120-100-80-60
272、-40-200Phase Noise(dBc/Hz)Ferrofluidic Droplet ControlB-fieldY-axis Ferrofluidic Droplet Movement Control600 nLFerrofluidic600 nLFerrofluidic-46.1 dBc/Hz 1 kHz-124.1 dBc/Hz 1 MHzLeff=L0Magnetic Sensor Phase NoiseFerrofluidicdropletX-axis Ferrofluidic Droplet Movement ControlTimeTimeFreq.Shift(lfl/f0
273、)Magnetic Bead Concentration(Beads/nL)Magnetic Sensing ResultsDI water Freq.Shift8321285120.0000.0040.0080.0120.016 Measured Freq Shift0 sec2 sec4 sec6 sec0 sec3 sec6 sec9 secOil suspensionOil suspensionOil suspensionOSC Freq Shift Sensitivity is 57.3 kHz/(beads/nL).PN at 1 MHz is-124.1 dBc/Hz.H.Wan
274、g,TMTT(2013)17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference27 of 41In-pixel HeaterTemperature Regulator COMSOL Thermal Simulation and MeasurementElectroch
275、emical Potentiostat Cyclic Voltammetry(CV)MeasurementChip Area-0.4-0.20.00.20.4-100-50050100 50 M MB 20 M MB 10 M MB DI water0102030405020406080100120 Oxidation Ipeak(nA)VWE VRE(V)Measured WE Current(nA)Oxidation Ipeak(nA)MB Concentration(M)RheatHeaterFerrofluidic inductors are reused for Rheat.Meth
276、ylene Blue(MB)In-Pixel CMOS Cyclic VoltammetryMethylene Blue(MB)Oxidation Peak Current-1000-500050010000100-100-200(m)-1000PixelsSide ViewChip Top View-5000500100010005000-500-1000(m)(C)424038363432302826Measured IR Camera ImageScan rate=160 mV/s-0.4-0.20.00.20.4-100-50050100150Measured WE Current(n
277、A)VWE VRE(V)Electrochemical Cell Pixel Variation(6 Independent Pixels)Scan rate=160 mV/s50 M MBOxidation Peak Current for MB DetectionFerrofluidic inductor is re-used for heat radiator.In-pixel heater can achieve desired local temperaturefrom 25 to 45 17.6 Fully Integrated CMOS Ferrofluidic Biomolec
278、ular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference28 of 41In-pixel Electrochemical PotentiostatTemperature Regulator COMSOL Thermal Simulation and MeasurementElectrochemical Potentiostat Cyclic Voltammetry
279、(CV)MeasurementChip Area-0.4-0.20.00.20.4-100-50050100 50 M MB 20 M MB 10 M MB DI water0102030405020406080100120 Oxidation Ipeak(nA)VWE VRE(V)Measured WE Current(nA)Oxidation Ipeak(nA)MB Concentration(M)RheatHeaterFerrofluidic inductors are reused for Rheat.Methylene Blue(MB)In-Pixel CMOS Cyclic Vol
280、tammetryMethylene Blue(MB)Oxidation Peak Current-1000-500050010000100-100-200(m)-1000PixelsSide ViewChip Top View-5000500100010005000-500-1000(m)(C)424038363432302826Measured IR Camera ImageScan rate=160 mV/s-0.4-0.20.00.20.4-100-50050100150Measured WE Current(nA)VWE VRE(V)Electrochemical Cell Pixel
281、 Variation(6 Independent Pixels)Scan rate=160 mV/s50 M MBOxidation Peak Current for MB Detection MB is measured for characterization of EC cells.EC variation shows the robustness of post-processing17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Man
282、ipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference29 of 41Bio Demonstration RPA(Recombinase Polymerase Amplification)is conducted to demonstrate the CMOS ferrofluidic platform.Low concentration of target DNA can be amplified through RPA within 20 minP.Nguyen,M
283、icrosystems&Nanoengineering(2022)RPAPCRDenaturation MethodEnzymaticThermalTime 2 HourTemperature37(Isothremal)50,72&98 Amplification EfficiencyHighLowCostLowHigh17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2
284、024 IEEE International Solid-State Circuits Conference30 of 41Bio Experiment ProceduresRPA PCR And Cyclic Voltammetry(CV)Response Changes at 37 C-0.4-0.20.00.20.4-60-40-200204060 0 min 4 min 8 min 12 min 16 min 20 minRPA DNA Amplification Results0481216200102030405060 Oxidation Ipeak(nA)VWE VRE(V)Ti
285、me(min)Oxidation Ipeak(nA)Measured Current(nA)Oxidation IpeakOxidation Ipeak decreasesVWE VREWE CurrentCV before PCR PrimerInactive MBVWE VREWE CurrentCV after PCR Active Methylene Blue(MB)Ipeak Oxidation Ipeak decreasesTarget DNAPolymeraseScan rate=160 mV/s Target DNA and MB are in sample17.6 Fully
286、 Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference31 of 41Bio Experiment ProceduresRPA PCR And Cyclic Voltammetry(CV)Response Changes at 37 C-0.4-0.20.00.20.4-60-40-20
287、0204060 0 min 4 min 8 min 12 min 16 min 20 minRPA DNA Amplification Results0481216200102030405060 Oxidation Ipeak(nA)VWE VRE(V)Time(min)Oxidation Ipeak(nA)Measured Current(nA)Oxidation IpeakOxidation Ipeak decreasesVWE VREWE CurrentCV before PCR PrimerInactive MBVWE VREWE CurrentCV after PCR Active
288、Methylene Blue(MB)Ipeak Oxidation Ipeak decreasesTarget DNAPolymeraseScan rate=160 mV/s Double-strand DNA(dsDNA)starts to be denatured at 37.17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE Internation
289、al Solid-State Circuits Conference32 of 41Bio Experiment ProceduresRPA PCR And Cyclic Voltammetry(CV)Response Changes at 37 C-0.4-0.20.00.20.4-60-40-200204060 0 min 4 min 8 min 12 min 16 min 20 minRPA DNA Amplification Results0481216200102030405060 Oxidation Ipeak(nA)VWE VRE(V)Time(min)Oxidation Ipe
290、ak(nA)Measured Current(nA)Oxidation IpeakOxidation Ipeak decreasesVWE VREWE CurrentCV before PCR PrimerInactive MBVWE VREWE CurrentCV after PCR Active Methylene Blue(MB)Ipeak Oxidation Ipeak decreasesTarget DNAPolymeraseScan rate=160 mV/s Primers start to attach single-strand DNA(ssDNA).17.6 Fully I
291、ntegrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference33 of 41Bio Experiment ProceduresRPA PCR And Cyclic Voltammetry(CV)Response Changes at 37 C-0.4-0.20.00.20.4-60-40-2002
292、04060 0 min 4 min 8 min 12 min 16 min 20 minRPA DNA Amplification Results0481216200102030405060 Oxidation Ipeak(nA)VWE VRE(V)Time(min)Oxidation Ipeak(nA)Measured Current(nA)Oxidation IpeakOxidation Ipeak decreasesVWE VREWE CurrentCV before PCR PrimerInactive MBVWE VREWE CurrentCV after PCR Active Me
293、thylene Blue(MB)Ipeak Oxidation Ipeak decreasesTarget DNAPolymeraseScan rate=160 mV/s Polymerase starts to create complementary ssDNA.MB is attached to newly created DNA.17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and
294、Sensing 2024 IEEE International Solid-State Circuits Conference34 of 41Bio Experiment ProceduresRPA PCR And Cyclic Voltammetry(CV)Response Changes at 37 C-0.4-0.20.00.20.4-60-40-200204060 0 min 4 min 8 min 12 min 16 min 20 minRPA DNA Amplification Results0481216200102030405060 Oxidation Ipeak(nA)VWE
295、 VRE(V)Time(min)Oxidation Ipeak(nA)Measured Current(nA)Oxidation IpeakOxidation Ipeak decreasesVWE VREWE CurrentCV before PCR PrimerInactive MBVWE VREWE CurrentCV after PCR Active Methylene Blue(MB)Ipeak Oxidation Ipeak decreasesTarget DNAPolymeraseScan rate=160 mV/s MB combined to DNA becomes elect
296、rochemically inactive.The current of cyclic voltammetry decreases.17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference35 of 41Bio Experiment ResultsRPA PCR And
297、 Cyclic Voltammetry(CV)Response Changes at 37 C-0.4-0.20.00.20.4-60-40-200204060 0 min 4 min 8 min 12 min 16 min 20 minRPA DNA Amplification Results0481216200102030405060 Oxidation Ipeak(nA)VWE VRE(V)Time(min)Oxidation Ipeak(nA)Measured Current(nA)Oxidation IpeakOxidation Ipeak decreasesVWE VREWE Cu
298、rrentCV before PCR PrimerInactive MBVWE VREWE CurrentCV after PCR Active Methylene Blue(MB)Ipeak Oxidation Ipeak decreasesTarget DNAPolymeraseScan rate=160 mV/s Oxidation current decreases over 20 min.This shows that target DNA is amplified.17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Proces
299、sing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference36 of 41Outline Introduction on CMOS-Fluidic Integrated System CMOS Ferrofluidic Biomolecular Processing Platform Measurement Results Conclusions17.6 Fully Integrated
300、 CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference37 of 41Comparison Table17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Mani
301、pulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference38 of 41Comparison Table17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conf
302、erence39 of 41Conclusion Ferrofluidics and sensors are fully-integrated in CMOS chip.No external pneumatic pump and magnet is required.Iso-thermal RPA is conducted for the demonstration.17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,M
303、ultiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference40 of 41Acknowledgement ETH Zurich IDEAS lab members for helpful technical discussions GlobalFoundries for the chip fabrication17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-
304、Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Solid-State Circuits Conference41 of 41Thank you for your attention17.6 Fully Integrated CMOS Ferrofluidic Biomolecular Processing Platform with On-Chip Droplet-Based Manipulation,Multiplexing,and Sensing 2024 IEEE International Sol
305、id-State Circuits Conference42 of 41Please Scan to Rate Please Scan to Rate This PaperThis Paper17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State Circuits Conference1 of 5
306、5Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing and Impedance Spectroscopy of 4nL Droplets at a 67mm/s VelocityQijun Liu,Diana Arguijo Mendoza,Alperen Yasar,Dilara Caygara,Aya Kassem,Douglas Densmore,Rabia Tugce YazicigilBoston University,Boston,MA 17.7:Droplet Microfluid
307、ics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State Circuits Conference2 of 55Motivation17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of
308、 4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State Circuits Conference3 of 55Motivation17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State Circuits Confe
309、rence4 of 55Motivation17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State Circuits Conference5 of 55Motivation17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Lumi
310、nescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State Circuits Conference6 of 556Motivation17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024
311、 IEEE International Solid-State Circuits Conference7 of 55Motivation17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State Circuits Conference8 of 55Outline Motivation Hybrid P
312、latform System ArchitecturesArchitecture for Impedance AnalyzerArchitecture for Luminescence Detector Measurement Results Conclusion17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International S
313、olid-State Circuits Conference9 of 55Hybrid Platform:Co-Design Approach17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State Circuits Conference10 of 55Hybrid Platform:Co-Desi
314、gn Approach17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State Circuits Conference11 of 55Hybrid Platform:Co-Design Approach17.7:Droplet Microfluidics Co-Designed with Real-
315、Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State Circuits Conference12 of 55Hybrid Platform:Co-Design Approach17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of
316、4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State Circuits Conference13 of 55Hybrid Platform:Co-Design Approach17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International So
317、lid-State Circuits Conference14 of 55Hybrid Platform:Co-Design ApproachMicrofluidicDevice rapid-prototyped low-cost&modular conductive ink&polycarbonate17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024
318、IEEE International Solid-State Circuits Conference15 of 55Hybrid Platform:Co-Design ApproachMicrofluidicDeviceDroplet Microfluidics real-time droplet detection in nL short residence time in ms-level rapid-prototyped low-cost&modular conductive ink&polycarbonate17.7:Droplet Microfluidics Co-Designed
319、with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State Circuits Conference16 of 55Hybrid Platform:Co-Design ApproachMicrofluidicDeviceDroplet MicrofluidicsLuminescence Detection high resolution(6.7 nA/count)weak lig
320、ht level detection from nLdroplets(38.2 nL)rapid-prototyped low-cost&modular conductive ink&polycarbonate real-time droplet detection in nL short residence time in ms-level17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 6
321、7mm/s Velocity 2024 IEEE International Solid-State Circuits Conference17 of 55 high resolution(6.7 nA/count)weak light level detection from nLdroplets(38.2 nL)Hybrid Platform:Co-Design ApproachMicrofluidicDeviceDroplet MicrofluidicsLuminescence DetectionImpedanceSpectroscopy low noise(2.4 pArmsinput
322、-referred noise BW=1kHz)nL-volume droplet detection(4 nL)rapid-prototyped low-cost&modular conductive ink&polycarbonate real-time droplet detection in nL short residence time in ms-level17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL D
323、roplets at a 67mm/s Velocity 2024 IEEE International Solid-State Circuits Conference18 of 55Hybrid Platform:3D Rendering17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State C
324、ircuits Conference19 of 55Low-costPolycarbonateHybrid Platform:3D Rendering17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State Circuits Conference20 of 55Low-costPolycarbona
325、teConductive-inkElectrodesHybrid Platform:3D Rendering17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State Circuits Conference21 of 55Low-costPolycarbonateConductive-inkElect
326、rodesBlocking OilHybrid Platform:3D Rendering17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State Circuits Conference22 of 55Hybrid Platform:Microfluidic Device17.7:Droplet M
327、icrofluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State Circuits Conference23 of 55Hybrid Platform:Microfluidic Device17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence S
328、ensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State Circuits Conference24 of 55Outline Motivation Hybrid Platform System ArchitecturesArchitecture for Impedance AnalyzerArchitecture for Luminescence Detector Measurement Results Conclusion17.7:Dro
329、plet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State Circuits Conference25 of 55Impedance Spectroscopy:System Architecture17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS L
330、uminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State Circuits Conference26 of 55(1)=(1)|(1)|=(1)|(1)|Impedance Spectroscopy:Impedance ModelOFFCHIP17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImped
331、ance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State Circuits Conference27 of 55Impedance Spectroscopy:Transimpedance Amplifier17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s V
332、elocity 2024 IEEE International Solid-State Circuits Conference28 of 55Impedance Spectroscopy:Transimpedance Amplifier17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State Cir
333、cuits Conference29 of 55Impedance Spectroscopy:Phase GeneratorOFFCHIP17.7:Droplet Microfluidics Co-Designed with Real-Time CMOS Luminescence Sensing andImpedance Spectroscopy of 4nL Droplets at a 67mm/s Velocity 2024 IEEE International Solid-State Circuits Conference30 of 55Outline Motivation Hybrid Platform System ArchitecturesArchitecture for Impedance AnalyzerArchitecture for Luminescence Detec