《SESSION 32 - Power Amplification and Signal Generation.pdf》由會員分享,可在線閱讀,更多相關《SESSION 32 - Power Amplification and Signal Generation.pdf(342頁珍藏版)》請在三個皮匠報告上搜索。
1、ISSCC 2024SESSION 32Power Amplification and Signal Generation32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference1 of 42A 47GHz 4-way Doherty PA with 23.7dBm P1dBand 21.7%/13
2、.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDMXiaohan Zhang*,Hao Guo*,and Taiyun ChiRice University,Houston,TX*Equally credited authors(ECA)32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE Internation
3、al Solid-State Circuits Conference2 of 42Outline Introduction Transformer-based 4-way Doherty network High-speed adaptive biasing Measurement results Conclusion32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE Interna
4、tional Solid-State Circuits Conference3 of 42PA Back-off EfficiencyOFDM transient envelopeTimeAmplitude of envelopePAPR=12dB-25-20-15-10-50020406080%020406080%Normalized output power(dBm)PDF of OFDM,PAPR=12dBDEPEAK=78.5%Drain efficiency DE12dB=14DEPEAK Ideal class-B curveHigh PAPR for 5G NR(QAM,OFDM
5、,CA)PAEBACKOFFis a more relevant metric32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference4 of 422-way Doherty PARFin&RFout minimum baseband computation overheadV1,I1V2,I2/4
6、 Tline Z0V2=jZ0I1I2=jY0V10dBBack-off-6dBEfficiency peaksDrain efficiencyRLPAPPAMImpedance inverterVMVLI0ILIMIP0dBBack-off-6dBVMVLEfficiency peaks0dBIPBack-off-6dBI0=IL IP32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IE
7、EE International Solid-State Circuits Conference5 of 42Toward N-way Doherty(N=4 as an example)Type-I N-way Doherty Incorrect load modulation,linearity concernRLPAP,2PAP,1PAMPAP,3VMVP,1IMIP,1IP,2IP,32-way sub-DohertyRLPAP,3PAP,2PAP,1PAMIMIP,1IP,2IP,3Type-II N-way Doherty Correct load modulationX.Zhan
8、g,JSSC23;M.Beikmirza,JSSC210dBBack-off-9.5dBVP,1&IMEarly saturation of IM0dBBack-off-12dBVMVM saturatedPOUT,M=0.5VMIM saturated at 9.5dB backoffLinearity concern32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE Intern
9、ational Solid-State Circuits Conference6 of 42How to ensure design success of Doherty?Co-operation among main&peaking amplifiers adaptive biasingDesired load modulation compact yet low-loss Doherty output network 10Output currentsImax141358Normalized Vin10Output voltagesVmax141358Normalized Vin10Dra
10、in efficiencyDEmax141358Normalized Vin10Active load modulation4Ropt141358Normalized VinRoptMain32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference7 of 42Efficiency compariso
11、n of N-way Doherty MainPeak 1Peak 2Peak N-1Tline-based N-way Doherty networkTransistors modeled as class-B current sourcesAssuming a practical Tline loss(0.4dB/mm)50-25-20-15-10-50020406080%020406080%2-way Doherty3-way Doherty4-way DohertyIdeal class-BDrain efficiency 4 way avg.eff.3 way avg.eff.2 w
12、ay avg.eff.1.44PDF of OFDM,PAPR=12dBNormalized output power(dBm)32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference8 of 42Challenges of N-way DohertyExisting N-way Doherty n
13、etwork require at least N transformers size,loss,and complexity overheadPAMPAP,1RANTkm,1km,2PAMPAP,1PAP,2RANTkm,1km,2km,3PAMPAP,1PAP,2PAP,3km,1km,2km,3km,4RANT2-way Doherty with 2 transformers S.Hu,JSSC193-way Doherty with 3 transformers A.Kumaran,RFIC234-way Doherty with 4 transformers M.Mortazavi,
14、JSSC2232.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference9 of 42Challenges of N-way DohertyNarrow modulation BW due to adaptive biasing speed limitation3GPP V17.6.02-way T.H
15、uang,ISSCC21Modulation BW=200MHz3-way X.Zhang,JSSC23Modulation BW=100MHz 4-way E.Liu RFIC23Modulation BW=250MHz 32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference10 of 42De
16、sign goalsDeep back-off efficiency enhancement with low loss&compact footprintMore than 2000MHz modulation BWPAP,N-2PAP,N-1PAP,2PAP,1PAMN-way Doherty networkAdaptive biasing circuitRANT32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-Q
17、AM OFDM 2024 IEEE International Solid-State Circuits Conference11 of 42Outline Introduction Transformer-based 4-way Doherty network High-speed adaptive biasing Measurement results Conclusion32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR
18、 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference12 of 42Proposed 4-way Doherty network synthesis procedure2-way sub-Doherty can be implemented using 1 transformer,rather than 2 in conventional designsTline 1Tline 2Tline 3Tline 4Tline 5RLPAMPAP,1PAP,2PAP,3Conventional Tline-based
19、4-way Doherty2-way sub-Doherty PAP,2PAP,3k1 transformerk2 transformersPAMPAP,1k32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference13 of 42Proposed 4-way Doherty network synt
20、hesis procedureStep 1:insert 3 ideal transformersStep 1Z01Z02Z03Z04Z05RANT=50 PAMPAP,1PAP,2PAP,3k=11n1k=11n2k=11n3Ideal transformersTline 1Tline 2Tline 3Tline 4Tline 5RLPAMPAP,1PAP,2PAP,3Conventional Tline-based 4-way Doherty2-way sub-Doherty32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/
21、13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference14 of 42Proposed 4-way Doherty network synthesis procedureStep 2:replace Tlines with networkRANT=50PAMPAP,1PAP,2PAP,3k=11n1k=11n2k=11n3Z01Z02Z03Z04Z05Step 2Z01Z02Z03Z04Z05RANT=50 P
22、AMPAP,1PAP,2PAP,3k=11n1k=11n2k=11n3Ideal transformers32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference15 of 42Proposed 4-way Doherty network synthesis procedureStep 3:re-a
23、rrange components marked in colorsRANT=50PAMPAP,1PAP,2PAP,3k=11n1k=11n2k=11n3Z01Z02Z03Z04Z05RANT=50PAMPAP,1PAP,2PAP,3k=11n1k=11n2k=11n3Step 332.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State
24、Circuits Conference16 of 42Proposed 4-way Doherty network synthesis procedureStep 4:consolidate into 3 physical transformers RANT=50PAMPAP,1PAP,2PAP,3k=11n1k=11n2k=11n3Step 4RANT=50PAMPAP,1PAP,2PAP,3k11n1k21n2k31n3Physical transformers32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PA
25、E at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference17 of 42Proposed 4-way Doherty network synthesis procedureStep 5:convert to differentialStep 5RANT=50PAMPAP,1PAP,2PAP,3k11n1k21n2k31n3Physical transformersRANT=50PAMPAP,1PAP,2PAP,3k11n1k2
26、1n2k31n3C1C2C3C4CS1CS2CMCP1ROPT32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference18 of 42Proposed 4-way Doherty network synthesis procedure4-way Doherty with only 3 transfo
27、rmersInterface with differential power cellsImpedance transformation from RANTto ROPTAbsorb transistor device parasitic CDEVRANT=50PAMPAP,1PAP,2PAP,3k11n1k21n2k31n3C1C2C3C4CS1CS2CMCP1ROPTAbsorb CDEV32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000M
28、Hz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference19 of 42General N-way Doherty synthesis with N-1 transformersN-way Doherty with N-1 transformersN-way symmetric Doherty can be described by(N+1)(N+1)Z-matrixRANTk11n1k21n2k31n3kN-11nN-1CDEVCDEVCDEVCDEVPAP,2PAP,1PAMPAP,N-2PAP
29、,N-1CDEVVLVP,1VP,2VP,3VP,N-2VP,N-1VMZ-parameters of a N-way Symmetric Doherty 00ILIP,1IP,2IP,3IP,N-2IP,N-1IM00000Z1,N+1Z2,N+1ZN+1,1ZN+1,2Z2,3Z3,2Z3,4Z4,3Z4,5ZN,N-1ZN-1,NZN-1,N-20000000000000000000000000000000000000Tline 1Tline 2Tline 3RLTline 4Tline 5Tline(2N-4)Tline(2N-3)PAP,N-2PAP,N-1PAP,2PAP,1PAM
30、2-way sub-Doherty 32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference20 of 42Network design constraintsQLoadpull=ROPTCDEV=constant for given technology and frequencyRANT=50P
31、AMPAP,1PAP,2PAP,3k11n1k21n2k31n3C1C2C3C4CS1CS2CMCP1ROPTAbsorb CDEVC1 C4 fully absorb CDEV:QLoadpull n1 ROPT2RANTCDEV C1 QLoadpull n3 CDEV C3 QLoadpull n31CDEV C4 QLoadpull 3Z032n22ROPTRANTCDEV C2 32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz
32、 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference21 of 42Top-level Doherty PA schematic and 3-D EM modelGGSPAMPAP,1PAP,2PAP,3DRVMDRVP,3DRVP,1DRVP,2RFOUTRFINAdaptive biasingAdaptive biasingAdaptive biasingn1=0.95k1=0.45n2=0.64k2=0.42n3=0.71k3=0.58CS1CS1CMCMCP1+Wilkinson divid
33、erI/Q hybridI/Q hybridDRV81m 28fF2V2V2V1V1V1V1V0.27V0.27V50 50-90 0-90 0 AlCu 1Cu 2Lateral view of top metalsCascode PA213m 213m 63fF30m 1.3V380m 305m CS2CS2CP132.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE Interna
34、tional Solid-State Circuits Conference22 of 42Transformer design parametersGGSRFOUTn1=0.95k1=0.45n2=0.64k2=0.42n3=0.71k3=0.58CS1CS1CMCMCP12V2V2V380m 305m CS2CS2CP1Transformer Design ParameterDesign EquationTheo.ValueEM Sim.0.400.420.650.580.920.95k10.440.45n1n20.600.64k1n1k2k2n20.650.71k3n3k3n3Z03Z0
35、3+2n12ROPTRANT11+2n2(1+3/4 2ROPT/RANT)Z03Z03+4/3n32ROPTRANTZ03n12k12 L1197pH169pHL2190pH175pHn22k22 Z03(1+4/3 RANT/2ROPT)L3278pH221pHZ032ROPT/RANT3/4n32k32 32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE Internation
36、al Solid-State Circuits Conference23 of 42EM-simulated active load modulation-25-20-15-10-50050100150200 Normalized output power(dBm)Impedance()re(PAM)im(PAM)re(PAP1)im(PAP1)re(PAP2)im(PAP2)re(PAP3)im(PAP3)Simulated 46GHzROPT=22 70(3.2 ROPT)Passive efficiencyNormalized output power(dBm)-25-20-15-10-
37、5050556065707580%66.7%(1.76dB loss)72.4%(1.4dB loss)Simulated 46GHzMain cannot reach 4ROPTat 12dB back-off due to passive loss X.Zhang,JSSC23Low loss due to reduced number of transformers32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64
38、-QAM OFDM 2024 IEEE International Solid-State Circuits Conference24 of 42Outline Introduction Transformer-based 4-way Doherty network High-speed adaptive biasing Measurement results Conclusion32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G
39、NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference25 of 42Top-level schematic of adaptive biasingEnvelope detector+bufferEnvelope detector:extract signal envelopeBuffer:provide driving capability Envelope detector(ED)Buffer1st stageBiasing Voltage VAB2nd stageRFINEDOUTEnvelopeBia
40、s32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference26 of 42Envelope detector(ED)architectureFundamental leakage rejectionLarge CED+CDRV 1dB extra balun loss and narrow BWBa
41、lunDRVCED+CDRV EDOUTBalunDRVCDRV EDOUTNaturally absorb CEDat balun inputSevere fundamental leakage at EDout32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference27 of 42Single-
42、ended ED with proposed notch filter Naturally absorb CEDat balun inputFundamental leakage rejection by notch filterFit LS1into existing routing space between ED and buffer negligible area overheadDRVPAVDDVDDVDDVAB,PAVAB,DRV167m 30m 23m 23m BalunLS1LS2 for VAB,PALS2 for VAB,DRVED2 buffer for DRV and
43、PABalunDRVCDRV Notch filterEDOUTLS10.1110100-40-30-20-10010 Frequency(GHz)Conversion gain(dB)w/o filterw filterNotch 46GHz32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference
44、28 of 42Compact shunt peaking inductor to increase buffer BWLS2=700p(=0.7)87%BW extensionTransient waveform of VABunder 400-3200MHz OFDM modulation error remains small up to 2000MHz BWVABLS2RSCpar,PAEDOUTVDD0.1110100-25-20-15-10-505 LS2=0LS2=350pLS2=700pLS2=1050pLS2=1400pFrequency(GHz)Normalized buf
45、fer gain(dB)Design choice 87%BW extension=0.99=0.70=0.57=0.490.00.30.60.91.2 Voltage(V)OFDM envelope05101520250.00.10.20.30.4 400MHz800MHz1200MHz1600MHz2000MHz3200MHzGate biasing for PA stage(Peak 1),LS2=700pHVAB(V)Time(ns 400MHz/BW)Small signalLarge signal32.1 A 47GHz 4-way Doherty PA with 23.7dBm
46、P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference29 of 42Layout with compact inductorsDRVPAVDDVDDVDDVAB,PAVAB,DRV167m 30m 23m 23m BalunLS1LS2 for VAB,PALS2 for VAB,DRVED2 buffer for DRV and PANegligible area overhe
47、ad32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference30 of 42Outline Introduction Transformer-based 4-way Doherty network High-speed adaptive biasing Measurement results Con
48、clusion32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference31 of 42Chip micrographGlobalFoundries 45nm CMOS SOI processActive area:1.4mm0.58mm=0.81 mm2MainPeak 3Peak 1Peak 21
49、400m 580m 250m RFINRFOUT32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference32 of 42CW measurement result:large signalPSAT=24dBm,P1dB=23.7dBm,PAEPEAK=26.8%PAE at 6/12dB=21.7%
50、/13.1%,1.6/2.0enhancement over class-B0510152025051015202530 061218243036%Gain(meas.)Gain(sim.)PAE(meas.)PAE(sim.)DE(meas.)DE(sim.)Ideal class-BPSAT=24dBmOutput power(dBm)Power gain(dB)Efficiency6dB12dB25.2%21.7%1.613.1%2.026.8%47GHzP1dB=23.7dBm32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.
51、7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference33 of 42CW measurement result:sample-to-sample variations0510152025051015202530 061218243036%Output power(dBm)Gain(dB)PAE47GHzGain sample 1Gain sample 2Gain sample 3PAE sample 1
52、PAE sample 2PAE sample 3Sample#1PSAT(dBm)P1dB(dBm)PAEPEAK PAE6dB PAE12dB Sample#2Sample#324.0Reported in the paper23.726.8%21.7%13.1%24.123.826.5%21.2%13.1%Gain(dB)17.117.017.024.023.826.2%21.4%13.3%32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000
53、MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference34 of 42CW measurement result:adaptive biasing enabled/disabled0510152025051015202530%061218243036Gain(AB enabled)Output power(dBm)Gain(dB)PAEGain(AB disabled)PAE(AB enabled)PAE(AB disabled)47GHzAdaptive biasing enabledPSAT
54、(dBm)P1dB(dBm)PAEPEAK PAE6dB PAE12dB 24.023.726.8%21.7%13.1%23.021.224.7%17.4%7.7%Gain(dB)17.116.82.5dB1.7 Adaptive biasing disabled32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits
55、Conference35 of 425G NR modulation measurement results800MHz 5G NR FR2 1-CC 64-QAM OFDM Signal PAPR=9.8dBEVMrms=25.1dBPavg=14.1dBmPAEavg=13.8%ACLR=28.7dBc 28.7dBc 33.1dBcGuardband=42.64MHz based on 3GPP standard Occupied BW=800M 2 42.64MHz=714.72MHz 32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB an
56、d 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference36 of 425G NR modulation measurement results2000MHz 5G NR FR2 1-CC 64-QAM OFDM Signal PAPR=9.8dBEVMrms=25.0dBPavg=14.1dBmPAEavg=13.7%ACLR=30.5dBc 30.5dBc 34.1dBcGuardband=1
57、47.04MHz based on 3GPP standard Occupied BW=2000M 2 147.04MHz=1705.92MHz High-speed envelope tracking capability 1stsilicon PA demonstration of 2000MHz channel BW for 5G NR OFDM along with back-off efficiency enhancement up to 12dB PBO.32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%P
58、AE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference37 of 425G NR modulation measurement results 25.4dBc 30.0dBcPAPR=12.2dBCC0 EVMrms=25.1dBCC1 EVMrms=26.0dB Pavg=12.1dBmPAEavg=10.9%ACLR=25.4dBc800MHz(2400MHz)5G NR FR2 2-CC 64-QAM OFDM Si
59、gnal 32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference38 of 42ArchitectureFrequency(GHz)PSAT(dBm)P1dB(dBm)PAEPEAK PAE P1dBPAE6dBPAE12dBGain(dB)This WorkTransformer-based4-
60、way Doherty*Graphically estimated Last-stage drain efficiency Supply(V)Normalized PAE6dB#Normalized PAE12dB#SpecificationsT.HuangISSCC 21Continuous-coupler-based2-way Doherty 47.521.720.926.7%26%18.8%12.5*10.5%*X.ZhangJSSC 23Coupled-inductor-based 3-wayDoherty 3818.918.423.3%23.0%17.1%1510.2%*1.8(PA
61、),1(DRV)Z.MaISSCC 22Transformer-based 3-way Doherty2825.524.325.2%24.4%20.4%16.114.2%2.4(PA),1.2(DRV)2(PA),1(DRV)2(PA),1(DRV)4717.123.724.026.8%26.3%21.7%13.1%Normalized PAEPEAK#77.5%62.7%37.9%56.6%41.5%24.8%52.2%42.2%29.4%77.2%54.3%30.3%M.MortazaviJSSC 2229.518.724%/36%15%/33%Digital polar+4-way Do
62、hertyN/AN/AN/A10%/22%1(PA)49.7%/74.5%31.1%/68.3%20.7%/45.5%E.LiuRFIC 23Coupler-based 4-way Doherty 4022.722.526.2%20.6%*11.810.9%*2(PA),1(DRV)26.2%*A.KumaranRFIC 23Balun-first 3-way Doherty 2620.722.3%11.7%204.2%1.1(PA and DRV)N/AN/A63.6%50.0%26.4%46.2%24.2%8.7%Technology45nm CMOS SOI45nm CMOS SOI45
63、nm CMOS SOI55nm CMOS40nm CMOS 45nm CMOS SOI40nm CMOSComparison table32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference39 of 42Comparison tableNormalized PAE3-way Doherty4-w
64、ay Doherty3-way Doherty2-way Doherty2-way Doherty4-way Doherty3-way Doherty2-way Doherty4-way Doherty77.5%62.7%37.9%020406080100%Normalized PAEPEAKNormalized PAE6dBNormalized PAE12dB1.25Normalized PAE=measured PAE/highest PAEPEAKreported at each PAs operating frequencyNormalized PAEPEAK=26.8%/34.6%=
65、77.5%in our work32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference40 of 42Modulation SchemePAPR(dB)EVMrms(dB)Modulation BW(Hz)Pavg(dBm)PAEavgDPDCore Area(mm2)5G NR 1-CC 64-
66、QAM OFDM5G NR 1-CC 64-QAM OFDMNo5G NR 1-CC64-QAM OFDM 200M9.647.47.8%25.2No0.625G NR 1-CC64-QAM OFDM100M9.6411.314.7%25.0No1.4Single-carrier64-QAM250M17.717.5%25.2No0.546800M2000M0.81Custom 64-QAMOFDM300M10.77.98%/18%27.58Yes1.1Single-carrier64-QAM(33GHz)250M616.130.7%25.3NoCustom 64-QAMOFDM800M9.69
67、.815%23.5No1.550.77Normalized PAEavg#16.6%/37.3%31.1%35.7%36.2%22.5%9.89.814.114.113.8%13.7%39.9%39.6%25.1 25.063.6%ArchitectureFrequency(GHz)This WorkTransformer-based4-way Doherty Supply(V)SpecificationsT.HuangISSCC 21Continuous-coupler-based2-way Doherty 47.5X.ZhangJSSC 23Coupled-inductor-based 3
68、-wayDoherty 381.8(PA),1(DRV)Z.MaISSCC 22Transformer-based 3-way Doherty282.4(PA),1.2(DRV)2(PA),1(DRV)2(PA),1(DRV)47M.MortazaviJSSC 2229.5Digital polar+4-way Doherty1(PA)E.LiuRFIC 23Coupler-based 4-way Doherty 402(PA),1(DRV)A.KumaranRFIC 23Balun-first 3-way Doherty 261.1(PA and DRV)PSAT(dBm)P1dB(dBm)
69、21.720.918.918.425.524.323.724.018.7N/A22.722.520.7N/A*Graphically estimated Last-stage drain efficiency Comparison table32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference4
70、1 of 42ConclusionTo ensure Doherty design success output network+adaptive biasingN-way Doherty network with N-1 transformersHigh-speed adaptive biasing circuit featuring compact inductors47GHz demonstration of N=4 in GF 45nm CMOS SOIState-of-the-art PAEPEAK,PAE6dBand PAE12dBFirst silicon PA demonstr
71、ation of 2000MHz channel BW for 5G NR OFDM along with back-off efficiency enhancement up to 12dB PBO32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference42 of 42Acknowledgment
72、GlobalFoundries for chip fabricationKeysight and Rohde&Schwarz for measurement equipment supportMembers of the Rice Integrated Systems and Electromagnetics(RISE)Lab for insightful technical discussionsThank YouThank You32.1 A 47GHz 4-way Doherty PA with 23.7dBm P1dB and 21.7%/13.1%PAE at 6/12dB back
73、-off supporting 2000MHz 5G NR 64-QAM OFDM 2024 IEEE International Solid-State Circuits Conference43 of 42Please Scan to Rate Please Scan to Rate This PaperThis Paper32.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G B
74、ase-Station Transceivers 2024 IEEE International Solid-State Circuits Conference1 of 34A 24.25-to-29.5GHz Extremely-Compact Doherty Power Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station TransceiverHansik Oh,Seungwon Park,Jooseok Lee,Seungjae Baek,Joonho Jun
75、g,Taewan Kim,Jinhyun Kim,Woojae Lee,Jae-hong Park,Kihyun Kim,Dong-hyun Lee,Sangho Lee,Jeong Ho Lee,Ji Hoon Kim,Younghwan Kim,Sangyong Park,Bohee Suh,Soyoung Oh,Dongsoo Lee,Sehyug Jeon,Juho Son,Sung-gi YangSamsung Electronics32.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Diffe
76、rential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE International Solid-State Circuits Conference2 of 34Outline Background Compact&high PAEavgDoherty PA 4-channel beamforming TRx IC Implementation and measurement Performance comparison Conclusions32.2:A 24.2
77、5-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE International Solid-State Circuits Conference3 of 34Background TRx IC requirement:High Pout wide coverage:High efficiency energy saving :Comp
78、act size low cost PA requirement:High Pavg,PAEavg,and small sizeLNASWCh.#1AntDPACh.#2Ch.#3Mm-wave beamforming array32.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE International S
79、olid-State Circuits Conference4 of 34Background:Doherty PACarrierPeaking90 RFout90 RFoutPhase offsetDADAThis workILVL2RoptRoptZCILVLHZRoptZPPout 6dBLoad modulation for high PAEavgPhase offset for proper load modulation32.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differentia
80、l-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE International Solid-State Circuits Conference5 of 34Previous worksArchitecture#of Driver#of TFInput networkConventional#125Wilkinson+offset+TFConventional#225Coupler+TFDohertyoutputnetworkCarrierPeakingDriver 1Dr
81、iver 2TF4TF5Diff.Wilkinson dividerVDD,DVDD,DTF2TF3TF1Z0,Phase offsetDohertyoutputnetworkCarrierPeakingDriver 1Driver 2TF4TF5CouplerVDD,DVDD,DTF2TF3TF1#1#2*#of TF:input and interstage only32.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differential-Breaking Phase Offset Achievi
82、ng 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE International Solid-State Circuits Conference6 of 34Previous worksArchitecture#of Driver#of TFInput networkConventional#125Wilkinson+offset+TFConventional#225Coupler+TFLossy and bulky*#of TF:input and interstage only#1#2#of Driver=2#of Driver=
83、2#of TF=5#of TF=5CarrierPeakingDriver 1Driver 2TF4TF5CouplerVDD,DVDD,DTF2TF3TF1CarrierPeakingDriver 1Driver 2TF4TF5Wilkinson dividerVDD,DVDD,DTF2TF3TF1Z0,Phase offset32.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G
84、Base-Station Transceivers 2024 IEEE International Solid-State Circuits Conference7 of 34P VDD,DCbypDriverCarrierPeakingDifferential-Breaking Phase OffsetC=P C RFinTF1RFoutDohertyoutputnetworkTF2TF3Proposed Doherty PAArchitecture#of Driver#of TFInput networkConventional#125Wilkinson+offset+TFConventi
85、onal#225Coupler+TFThis work13TF*#of TF:input and interstage onlySupply for driver(VDD,D)at RF short node(Cbyp)32.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE International Solid-
86、State Circuits Conference8 of 34Proposed Doherty PASimple and compactArchitecture#of Driver#of TFInput networkConventional#125Wilkinson+offset+TFConventional#225Coupler+TFThis work13TF*#of TF:input and interstage only#of Driver=1P VDD,DCbypDriverCarrierPeakingDifferential-Breaking Phase OffsetC=P C
87、RFinTF1RFoutDohertyoutputnetworkTF2TF3#of TF=332.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE International Solid-State Circuits Conference9 of 34Conventional mm-wave Doherty PA
88、Differential-pair for all signal paths Diff.single-ended conversion for only RFinand RFoutS.E.Diff.*S.E.:single-endedDiff.:differentialDiff.S.E.RFoutRFinDohertyoutputnetworkCarrierPeakingDriver 1Driver 2TF4TF5Diff.Wilkinson dividerVDD,DVDD,DTF2TF3TF1Z0,Phase offset32.2:A 24.25-to-29.5GHz Extremely C
89、ompact Doherty Power Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE International Solid-State Circuits Conference10 of 34Proposed compact Doherty PAS.E.Diff.Diff.S.E.Diff.S.E.S.E.Diff.*S.E.:single-endedDiff.:differential Diff.S.E.con
90、versions in interstage networkRopt,D/2,P VDD,DCbypDriverCarrierPeakingDBPOP-CRopt,D/2,C RFinTF1RFoutDohertyoutputnetworkTF2TF332.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE Inte
91、rnational Solid-State Circuits Conference11 of 34Proposed compact Doherty PA*S.E.:single-endedDiff.:differential Zinto Ropt,D/2 impedance transformation by TFs DBPO with Z0=Ropt,D/2 No impedance transformationRopt,D/2,P VDD,DCbypDriverCarrierPeakingZin,PZin,CRopt,D/2Ropt,D/2Ropt,Df0 shortZCZPDBPOP-C
92、Ropt,D/2,C RFinTF1RFoutDohertyoutputnetwork32.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE International Solid-State Circuits Conference12 of 34Fundamental waveformS.E.Diff.Ropt,
93、D/2,P VDD,DCbypDriverCarrierPeakingZin,PZin,CRopt,D/2Ropt,D/2Ropt,DS.E.Diff.f0 shortABCDEGFHDiff.S.E.ZCZPDBPOP-CRopt,D/2,C Diff.(=180)018036090270018036090270ABS.E.018036090270018036090270S.E.(=-C+P+180)Diff.(=180)018036090270018036090270018036090270018036090270Diff.(=180)0-180-C-P-180-C-C-180-P-P-1
94、80 CEHDFGPhase offset(=-C+P)Phase offset(=-C+P)Differential-pair of the driver stage 180 phase difference between two nodes32.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE Interna
95、tional Solid-State Circuits Conference13 of 34Fundamental waveformS.E.Diff.Ropt,D/2,P VDD,DCbypDriverCarrierPeakingZin,PZin,CRopt,D/2Ropt,D/2Ropt,DS.E.Diff.f0 shortABCDEGFHDiff.S.E.ZCZPDBPOP-CRopt,D/2,C Diff.(=180)018036090270018036090270ABS.E.018036090270018036090270S.E.(=-C+P+180)Diff.(=180)018036
96、090270018036090270018036090270018036090270Diff.(=180)0-180-C-P-180-C-C-180-P-P-180 CEHDFGPhase offset(=-C+P)Phase offset(=-C+P)Different phase lagging(C,P)at nodes C and D Separate signal transmissions as single-ended mode32.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differe
97、ntial-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE International Solid-State Circuits Conference14 of 34Fundamental waveformS.E.Diff.Ropt,D/2,P VDD,DCbypDriverCarrierPeakingZin,PZin,CRopt,D/2Ropt,D/2Ropt,DS.E.Diff.f0 shortABCDEGFHDiff.S.E.ZCZPDBPOP-CRopt,D/2,
98、C Diff.(=180)018036090270018036090270ABS.E.018036090270018036090270S.E.(=-C+P+180)Diff.(=180)018036090270018036090270018036090270018036090270Diff.(=180)0-180-C-P-180-C-C-180-P-P-180 CEHDFGPhase offset(=-C+P)Phase offset(=-C+P)Two differential signals having 180 phase difference at final node32.2:A 2
99、4.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE International Solid-State Circuits Conference15 of 34Practical design:Interstage C=0,C=90 for compact configuration Cbypfor RF short with
100、driver supply(VDD,D)VDD,DCbypDriverCarrierPeakingZin,PZin,CRopt,D/2Ropt,D/2Ropt,DCQ1CQ2LQ1ZCZPRopt,D/2,90 01803600180360036018001803600180360Diff.S.E.S.E.Diff.Diff.VDD,M0 0-180 90 0-180 90-90 CL1CL1CL20 CL2LLLLL2nd,CL2nd,PRFinRFoutVCG,PVCG,Cf0 short32.2:A 24.25-to-29.5GHz Extremely Compact Doherty P
101、ower Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE International Solid-State Circuits Conference16 of 34GNDCbypVDD,DLQ1CQ1CQ2TF2TF3VDD,DCbypDriverCarrierPeakingZin,PZin,CRopt,D/2Ropt,D/2Ropt,DCQ1CQ2LQ1ZCZPRopt,D/2,90 018036001803600
102、36018001803600180360Diff.S.E.S.E.Diff.Diff.VDD,M0 0-180 90 0-180 90-90 CL1CL1CL20 CL2LLLLL2nd,CL2nd,PRFinRFoutVCG,PVCG,Cf0 shortPractical design:Interstage TFs and inductor using 2 ultra-thick metalsUTM1UTM2Al32.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differential-Breakin
103、g Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE International Solid-State Circuits Conference17 of 34Practical design:Output Single TF based current combining Doherty network 5 2ndharmonic control using virtual short nodesRFoutRopt/2 ZCZP90 Ropt/2 Ropt/2LPHPZC2RoptRopt
104、ZPHigh ZRopt 6-dB back-off operationVDD,DCbypDriverCarrierPeakingZin,PZin,CRopt,D/2Ropt,D/2Ropt,DCQ1CQ2LQ1Single TF basedDoherty output networkZCZPRopt,D/2,90 01803600180360036018001803600180360Diff.S.E.S.E.Diff.Diff.VDD,M0 0-180 90 0-180 90-90 CL1CL1CL20 CL2LLLLL2nd,CL2nd,PRFinRFout2nd harmonicterm
105、inationVCG,PVCG,CRopt,C,90 32.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE International Solid-State Circuits Conference18 of 34ImplementationCarriercellPeakingcellInput TFInt.TF
106、2Int.TF1LQ1Doherty networkRFinRFoutGNDVDD,MGNDGNDGNDGNDGNDVDD,MVDD,DVDD,DVCG,CVCG,PDrivercell520 m 270 m 745 m 510 m 2022 JSSC,28 nm CMOS This work,45 nm SOI0.2 mm2(0.25 x 0.79 mm2)0.14 mm2(0.27 x 0.52 mm2)Save 30%area32.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differentia
107、l-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE International Solid-State Circuits Conference19 of 34Measurement setup32.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Sta
108、tion Transceivers 2024 IEEE International Solid-State Circuits Conference20 of 34Measurement:Doherty PA-20-1001020302022242628303234S21S22Solid:measurementDot:simulationn25824.25-29.5 GHzn257S11S-param.(dB)Small-signal gain of 17.6 20.6 dB Covering n257,n258 frequency bands32.2:A 24.25-to-29.5GHz Ex
109、tremely Compact Doherty Power Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE International Solid-State Circuits Conference21 of 34Measurement:Doherty PA1416182022242681012141618202224.5252627282929.5Output power(dBm)Gain(dB)*1-tone C
110、W5101520253035404581012141618202224.5252627282929.5Output power(dBm)PAE(%)*1-tone CW19.222.3dB at PavgPsat 20.3dBm22.127.8%at 6dB B.O.6 dBPAEmax=42.3%32.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Tra
111、nsceivers 2024 IEEE International Solid-State Circuits Conference22 of 34Measurement:Doherty PA-45-40-35-30-25-202468101214161824.5_L24.5_H26_L26_H28_H28_L29.45_L29.45_HOutput power(dBm)ACLR(dBc)ACLR=-30 dBc*5G NR OFDM 1-CC 100 MHz-40-35-30-25-20-152468101214161824.3262829.45Output power(dBm)EVM(dB)
112、EVM=-25 dB*5G NR OFDM 1-CC 100 MHzPavg=13.2-14.6 dBm*PAPR 10 dB(64 QAM 100M)32.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE International Solid-State Circuits Conference23 of 34M
113、easurement:Doherty PA100 MHz100 MHz100 MHz-31.2 dBc(Lower ACLR)-31.4 dBc(Upper ACLR)100 MHz100 MHz100 MHz-32.5 dBc(Lower ACLR)-30.1 dBc(Upper ACLR)100 MHz100 MHz100 MHz-30.9 dBc(Lower ACLR)-30.5 dBc(Upper ACLR)100 MHz100 MHz100 MHz-30.0 dBc(Lower ACLR)-31.2 dBc(Upper ACLR)EVM=-25.1dBEVM=-25.1dBEVM=-
114、25.3dBEVM=-25.2dB5G NR FR2 100 MHz 1-CC 64-QAM OFDM(10 dB PAPR)Fc=24.3 GHz,PAVG=14.6 dBm,PAE=25.6%,ACLR=-31.2 dBc5G NR FR2 100 MHz 1-CC 64-QAM OFDM(10 dB PAPR)Fc=26.0 GHz,PAVG=14.2 dBm,PAE=24.9%,ACLR=-30.1 dBc5G NR FR2 100 MHz 1-CC 64-QAM OFDM(10 dB PAPR)Fc=28.0 GHz,PAVG=14.0 dBm,PAE=23.7%,ACLR=-30.
115、5 dBc5G NR FR2 100 MHz 1-CC 64-QAM OFDM(10 dB PAPR)Fc=29.45 GHz,PAVG=13.2 dBm,PAE=20.0%,ACLR=-30.0 dBc32.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE International Solid-State Ci
116、rcuits Conference24 of 344-channel beamforming TRx Integrated with LNAs,switches,phase shifters,power divider/combiners,and other amplifiersLNADPAPSSWLNAPSSWLNALNAAntSWCh.#1Ch.#2Ch.#3Ch.#4DPADPADPAPre-PAGain amp.Pre-PAGain amp.PSSWPSSWPre-PAGain amp.Gain amp.Ant#1Ant#2Ant#3DrvCAPKDrvPKCADrvCAPKDrvPK
117、CA2-way divider/combiner2-way divider/combinerRADigital/BIasPre-PASWRFTAAtt.SWRx pathTx pathRx pathTx path2-way divider/combinerAnt#4AntSWAntSWAntSW32.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Trans
118、ceivers 2024 IEEE International Solid-State Circuits Conference25 of 34Implementation Small PA core size:520 x 270 m2 4-channel TRx test chip for performance verification4-channelbeamforming tranceiverPower combiner/dividerInter-connectionTARACarriercellPeakingcellTF1TF3TF2LQ1DohertyOutputnetworkDri
119、ver cell520 m 270 m 32.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE International Solid-State Circuits Conference26 of 34Measurement:Tx single channel-45-40-35-30-25-20-5-1371115
120、1924.65_L24.65_H25.525_L25.525_H26.1_L26.1_H27_L27_H27.7_L27.7_H28.4_L28.4_H29.1_L29.1_HOutput power(dBm)ACLR(dBc)ACLR=-30 dBc*5G NR OFDM 1-CC 100 MHz-40-35-30-25-20-15-10-5-13711151924.6525.52526.12727.728.429.1Output power(dBm)EVM(dB)EVM=-25 dB*5G NR OFDM 1-CC 100 MHz*PAPR 10 dB(64 QAM 100M)Pavg=1
121、2.3-12.6 dBm32.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE International Solid-State Circuits Conference27 of 34Measurement:Tx single channel05101520253035024681012141618202224.
122、6525.52526.12727.928.429.1Output power(dBm)DE(%)*1-tone CWDE of PA final stage with SW010203040506070051015202530352324252627282930Frequency(GHz)DE(%)Pout(dBm)DEavgDEmaxPsatPavg(1CC)Psat 20 dBmDEmax=30.2%32.2:A 24.25-to-29.5GHz Extremely Compact Doherty Power Amplifier with Differential-Breaking Pha
123、se Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE International Solid-State Circuits Conference28 of 34Performance comparison:1-tone CWReferenceThis workJSSC 22Park 5ISSCC 21Garay 3JSSC 22Pashaeifar 4ISSCC 21Huang 6JSSC 21Wang 1MWCL 23Choi 2Architecture2-stageDoherty2-stageDo
124、herty2-stageClass-AB2-stageDoherty2-stageDoherty2-stageClass-AB3-stageClass-ABFreq.(GHz)24.25-29.524.5-29.523.0-34.024.0-32.026.0-60.024.0-42.024.0-28.0Supply(V)2.21.81.91.82.02.02.2Gain(dB)19.2-22.312.0-17.3*20.417.0-18.0*10.0-16.0*20.533Psat(dBm)20.3-22.018.3-18.819.0-20.1*20.0-21.4*19.9-22.017.9-
125、20.420.4-21.5PAEpeak(%)32.5-42.326.0-30.540.0-50.036.0-40.0*23.3-40.535.0-45.034.3-40.0PAE6-dB B.O(%)22.1-27.818.0-22.0*24.0-28.0*24.0-34.013.4-32.820.0-25.0*15.0-19.0*Core area(mm2)0.140.20.210.370.620.210.23Chip size(mm2)0.380.42-2.281.35-*Graphically estimated32.2:A 24.25-to-29.5GHz Extremely Com
126、pact Doherty Power Amplifier with Differential-Breaking Phase Offset Achieving 23.7%PAEavgfor 5G Base-Station Transceivers 2024 IEEE International Solid-State Circuits Conference29 of 34Performance comparison:ModulationReferenceThis workJSSC 22Park 5ISSCC 21Garay 3JSSC 22Pashaeifar 4ISSCC 21Huang 6J
127、SSC 21Wang 1MWCL 23Choi 2Modulation64-QAMOFDM256-QAMOFDM64-QAMOFDM64-QAMOFDM64-QAMOFDM64-QAMOFDM64-QAMOFDM64-QAMOFDMPAPR(dB)10 10-8.6/9.79.6411.78 10Bandwidth(MHz)100800100800200100400200800100Pavg(dBm)13.2-14.612.0-13.412.011.210.7-11.49.88.87.4-9.58.4-11.314.2-15.3PAEavg(%)20.0-25.617.1-23.817.5 1
128、4.515.5-17.017.715.07.8-15.510.3-16.6 17.0-20.4EVM(dB)-25.0-25.0-25.0-25.0-25.0-25.1-24.5-25.4-25.1-25.0ACLR(dBc)-29.5-26.4-31.0-29.7-26.5-27.1-28.2-25.2 10 10-8.6/9.79.6411.78 10Bandwidth(MHz)100800100800200100400200800100Pavg(dBm)13.2-14.612.0-13.412.011.210.7-11.49.88.87.4-9.58.4-11.314.2-15.3PAE
129、avg(%)20.0-25.617.1-23.817.5 14.515.5-17.017.715.07.8-15.510.3-16.6 17.0-20.4EVM(dB)-25.0-25.0-25.0-25.0-25.0-25.1-24.5-25.4-25.1-25.0ACLR(dBc)-29.5-26.4-31.0-29.7-26.5-27.1-28.2-25.2 Vk(for no clip)Too small current to smooth and detect in a short time.32.3:A Load-Variation-Tolerant Doherty Power A
130、mplifier with Dual-Adaptive-Bias Scheme for 5G Handsets 2024 IEEE International Solid-State Circuits Conference23 of 34Monitoring circuit(Drive Level Detector)ComparatorAmplifierRectifierPos.Neg.VccDLD InputVthtimeAmplifiertimeComparatortimeRectifierT=1/ftimeMonitoring bottom of swing voltageoutputs
131、 gated sinusoidal current Amplify the swing.Quick response by twice rectifying in one cycleenoughsignalfor detectionsmallbasecurrentsSufficient signal intensityfor quick response.1stStageCommon Base2ndStageCommon Emitter32.3:A Load-Variation-Tolerant Doherty Power Amplifier with Dual-Adaptive-Bias S
132、cheme for 5G Handsets 2024 IEEE International Solid-State Circuits Conference24 of 34Monitoring circuit(Drive Level Detector)ComparatorAmplifierRectifierPos.Neg.VccDLD InputVthtimeAmplifiertimeComparatortimeRectifierT=1/ftimeMonitoring bottom of swing voltageOutputs gated sinusoidal current.Amplify
133、the swing.Quick response!Sufficient MagnitudeDifferentialSignaltwice rectifying in one cycleOutputs Sink CurrentsOne cycle122 3 nsec32.3:A Load-Variation-Tolerant Doherty Power Amplifier with Dual-Adaptive-Bias Scheme for 5G Handsets 2024 IEEE International Solid-State Circuits Conference25 of 34Out
134、line Recent handset PA requirements Load-variation problem of Doherty PA(DPA)Dual adaptive bias(DAB)Concept Monitoring circuit(Drive Level Detector)Fabrication Measurement Results Conclusion32.3:A Load-Variation-Tolerant Doherty Power Amplifier with Dual-Adaptive-Bias Scheme for 5G Handsets 2024 IEE
135、E International Solid-State Circuits Conference26 of 342ndCaA1st2ndDet.VGACombiner(at PCB)PeABal.1stDLDDiv.FFFBBal.Fabrication6 Our previous developed wideband(2.2 2.7GHz)combiner GaAsChip(Flipped)1.15 mm1.00 mm0.95 mmBypass Capaciorfor Bias Circuit2.20 mm2.60 mm32.3:A Load-Variation-Tolerant Dohert
136、y Power Amplifier with Dual-Adaptive-Bias Scheme for 5G Handsets 2024 IEEE International Solid-State Circuits Conference27 of 342ndCaA1st2ndDet.VGACombiner(at PCB)PeABal.1stDLDDiv.FFFBBal.Fabrication1.25 mmCaA+CaA-PeA+PeA-DLDVGADetector1.30 mmIntegrated in a GaAs HBT ChipDAB:10%of total chip size 32
137、.3:A Load-Variation-Tolerant Doherty Power Amplifier with Dual-Adaptive-Bias Scheme for 5G Handsets 2024 IEEE International Solid-State Circuits Conference28 of 34Outline Recent handset PA requirements Load-variation problem of Doherty PA(DPA)Dual adaptive bias(DAB)Concept Monitoring circuit(Drive L
138、evel Detector)Fabrication Measurement Results Conclusion32.3:A Load-Variation-Tolerant Doherty Power Amplifier with Dual-Adaptive-Bias Scheme for 5G Handsets 2024 IEEE International Solid-State Circuits Conference29 of 34-45-40-35-30-25-20-15-10-505105101520253035404550556022 23 24 25 26 27 28 29 30
139、 31 32 33 34 35 36 37ACLR(dBc)Gain(dB),PAE(%)Pout(dBm)CAB(without DLD)DAB(with DLD)PAEGainACLRL(),ACLRH()ACLRL(),ACLRH()-35 dBc42.8%32.6 dBmMeasurement Results5G NR without DPD Nominal LoadDFTS-OFDM QPSK 100 MHz 273RBVcc=5.5 V,Vbat=3.8V-45-40-35-30-25-202224262830323436EVM(dB)Pout(dBm)CAB(without DL
140、D)DAB(with DLD)-30.1 dB-31.7 dB 32.6 dBmGood efficiency(42.8%)and linearity(-35 dBc)without DPD!Linearized by DABLinearized by DAB32.3:A Load-Variation-Tolerant Doherty Power Amplifier with Dual-Adaptive-Bias Scheme for 5G Handsets 2024 IEEE International Solid-State Circuits Conference30 of 3410152
141、025303540-35-30-25-20-15-10-50306090 120 150 180 210 240 270 300 330 360PAE Pout=31.5 dBm(%)Worst ACLR Pout=31.5 dBm(dBc)Reflection Phase(deg)DAB(with DLD)CAB(without DLD)ACLRPAE-30 dBcMeasurement Results5G NR without DPD VSWR=2Practical linearity under load-variation without DPD!DFTS-OFDM QPSK 100
142、MHz 273RBVcc=5.5 V,Vbat=3.8VACLR is Linearized to-30 dBc by DAB.A few percent efficiency degradation32.3:A Load-Variation-Tolerant Doherty Power Amplifier with Dual-Adaptive-Bias Scheme for 5G Handsets 2024 IEEE International Solid-State Circuits Conference31 of 34-38-36-34-32-30-28-26-24-22-2022.12
143、.22.32.42.52.62.72.82.9Worst ACLR(dBc)Pout=31.5 dBmFrequency(GHz)CAB(without DLD)DAB(with DLD)-30 dBcBandwidthExtensionMeasurement Results5G NR Nominal Load(Frequency Response)(This topic will be discussed in a future extended paper.)DAB also increase robustness for frequency!32.3:A Load-Variation-T
144、olerant Doherty Power Amplifier with Dual-Adaptive-Bias Scheme for 5G Handsets 2024 IEEE International Solid-State Circuits Conference32 of 34Outline Recent handset PA requirements Load-variation problem of Doherty PA(DPA)Dual adaptive bias(DAB)Concept Block Diagram Monitoring circuit(Drive Level De
145、tector)Fabrication Measurement Results Conclusion32.3:A Load-Variation-Tolerant Doherty Power Amplifier with Dual-Adaptive-Bias Scheme for 5G Handsets 2024 IEEE International Solid-State Circuits Conference33 of 34ConclusionRef.1 234This WorkPublishTMTT2021TMTT2022TMTT2023JSSC2021ISSCC2024Frequency3
146、.5 GHz3.6 GHz0.9 GHz24-30 GHz2.5 GHz 90Hybrid CombinerYesNoNoYesNoSupplyModulatorNoYesYesNoNoDPDNoYesYesNoNoMonitorISSISSISSNoDLDSignal BW20 MHz5 MHz20 MHz100 MHz100 MHzsimplecompact&fasthigh-performance4%32.3:A Load-Variation-Tolerant Doherty Power Amplifier with Dual-Adaptive-Bias Scheme for 5G Ha
147、ndsets 2024 IEEE International Solid-State Circuits Conference34 of 34ReferencesThank you for your attention.1 H.Lyu et al.,“Linearity-Enhanced Quasi-Balanced Doherty Power Amplifier with Mismatch Resilience Through Series/Parallel Reconfiguration for Massive MIMO,”IEEE TMTT,vol.69,no.4,pp.2319-2335
148、,Apr.2021.2 C.F.Goncalves et al.,“Quasi-Load Insensitive Doherty PA Using Supply Voltage and Input Excitation Adaptation,”IEEE TMTT,vol.70,no.1,pp.779-789,Jan.2022.3 G.D.Singh et al.,“An Inverted Doherty Power Amplifier Insensitive to Load Variation with an Embedded Impedance Sensor in Its Output Po
149、wer-Combining Network,”IEEE TMTT,early access.4 M.Pashaeifar et al.,“A Millimeter-Wave Mutual-Coupling-Resilient Double-Quadrature Transmitter for 5G Applications,”IEEE JSSC,vol.56,no.12,pp.3784-3798,Dec.2021.5 H.Oh et al.,“Broadband InGaP/GaAs HBT Doherty Power Amplifier IC Using DirectInterstage P
150、ower Division for Compact 5G NR Handset Module,”IEEE Access,vol.11,pp.25879-25892,2023.6 S.Imai et al.,“Bandwidth Optimization of Doherty Power Amplifier Based on Source Converters for 5G Mobile Handsets,”IEEE TMTT,vol.70,no.1,pp.813-826,Jan.2022.32.3:A Load-Variation-Tolerant Doherty Power Amplifie
151、r with Dual-Adaptive-Bias Scheme for 5G Handsets 2024 IEEE International Solid-State Circuits Conference35 of 34Please Scan to Rate Please Scan to Rate This PaperThis Paper32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz G
152、BW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference1 of 36A 67.8-to-108.2GHz Power Amplifier witha Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAEWeiping Wu,Xun Bao,Shulan Chen,Yan Wang and Lei ZhangSchool of Integrated C
153、ircuits,Tsinghua University32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference2 of 36Outline Introduction Complementary-Gain-Boosting(CGB)Technique
154、 Three-coupled-line(TCL)network TCL-based CGB technique Hybrid TCL-based CGB technique Prototype Implementation Measurement Results Conclusions32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEE
155、E International Solid-State Circuits Conference3 of 36Outline Introduction Complementary-Gain-Boosting(CGB)Technique Three-coupled-line(TCL)network TCL-based CGB technique Hybrid TCL-based CGB technique Prototype Implementation Measurement Results Conclusions32.4:A 67.8-to-108.2GHz Power Amplifier w
156、ith a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference4 of 36Introduction Huge potential in underused V/E/W-band for 5G backhaul,etc.V/E/W-band applications growing rapidly Wideband PA to sup
157、port various V/E/W-band applications32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference5 of 36Conventional Broadband PA TechniquesUltra-widebandHig
158、h output powerLimited power efficiencyArea hungryWidebandEnhanced PBO efficiencyLossy 90 hybrid networkBulky signal distributedBalanced AmplifierDistributed AmplifierInputOutputInputOutputUnsuited for large scale applications32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Com
159、plementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference6 of 36Conventional Broadband PA TechniquesWidebandCompact areaLimited gain and efficiencyLimited output powerCompact areaDecent efficiencyNoticeable gain rippleCompromise
160、d bandwidthStaggerd AmplifierHigh-order Network Amplifier orBroadband Distributed Network AmplifierInputOutputInputOutputf1f2fcfcffffgaingaingaingainDriver StagePower StageDriver StagePower Stage32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Techn
161、ique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference7 of 36Challenges of Broadband PA Design near fT/296m/60nm26fF26fFVIN+VIN-VOUT+VOUT-Gmaxscales down 4.5 dB from 70 to 110GHz Gmax10dB 110GHz32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-
162、Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference8 of 36Challenges of Broadband PA Design near fT/2 Distributed balun for wideband and efficient output matching Power gain scales down around 5.0 dB from 70
163、to 110GHz26fF96m/60nm26fFRLCLZ0o,Z0e,Broadband distributedoutput networkVIN+VIN-32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference9 of 36Challenge
164、s of Broadband PA Design near fT/2 Gain of driver stages should be boosted over frequency Gain scaling down with frequency Degraded bandwidth Noticeable gain ripple Enhanced gain near fT/2 Enhanced bandwidth Flattened gainHigh-order wideband matching networkStaggered tuningProposed Complementary-gai
165、n-boosting technique Power stage GainFrequencyGainFrequencyComplete gainGain FrequencyDriver stages Gain FrequencyDriver stagesGain FrequencyPower stageGain FrequencyComplete gain Gain FrequencyDriver stagesGain FrequencyPower stageGain FrequencyComplete gain32.4:A 67.8-to-108.2GHz Power Amplifier w
166、ith a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference10 of 36Challenges of Broadband PA Design near fT/2 Gain of driver stages should be boosted over frequency Gain scaling down with frequen
167、cy Degraded bandwidth Noticeable gain ripple Enhanced gain near fT/2 Enhanced bandwidth Flattened gainHigh-order wideband matching networkStaggered tuningProposed Complementary-gain-boosting technique Power stage GainFrequencyGainFrequencyComplete gainGain FrequencyDriver stages Gain FrequencyDriver
168、 stagesGain FrequencyPower stageGain FrequencyComplete gain Gain FrequencyDriver stagesGain FrequencyPower stageGain FrequencyComplete gainHow to?32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024
169、IEEE International Solid-State Circuits Conference11 of 36Outline Introduction Complementary-Gain-Boosting(CGB)Technique Three-coupled-line(TCL)network TCL-based CGB technique Hybrid TCL-based CGB technique Prototype Implementation Measurement Results Conclusions32.4:A 67.8-to-108.2GHz Power Amplifi
170、er with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference12 of 36Three-Port Design ConceptThree-port MOS pair introduces more design flexibilityThree-port passive network is required to matc
171、h three-port MOS pairM1aM1bC1aC1bPort 1Port 2Port 3M1aM1bC1aC1bPort 1Port 2Port 3Port 2Port 1Common-source MOS pair as two-port deviceMOS pair as three-port deviceThree-port passive network32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique A
172、chieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference13 of 36Three-Port Passive Network SolutionsE.F.Garay et al.ISSCC 21 J.Ke et al.CICC 23 Tri-coupled transformer Complex model for wideband Unscalable T-Line based couplerAnother transformer is requiredfor DC
173、 bias and impedance matchingM.Vigilante et al.JSSC 1732.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference14 of 36Three-Coupled-Line(TCL)TCL is model
174、ed by A,B,C-mode characteristic admittance TCL can be simplified to three-port networkFundamentalModeA-ModeB-ModeC-ModeConductorIIIIIIYoaYobYocYoAYoB-YoaYobYocCharacteristic admittanceYABC,IIIIIIVAIVAIIVAIIIA-modeVCI0II-VCIIIC-modeVBI-VBIIVBIIIB-mode-jcotQ-jcscR-jcscR-jcotP-jcotP-jcotS-jcotS-jcscR-j
175、cscR I1I2I3V1V2V3V3,I3IV1,I1IIV2,I2IIIYABC,P=4YoaYob2Yoc+R=2YoaYob-S=4YoaYob2Yoc+-Q=YoaYob+Three-port networkS.Yamamoto et al.TMTT 1966 32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE Inter
176、national Solid-State Circuits Conference15 of 36Three-Coupled-Line(TCL)in Silicon Process TCL can be realized by stacked conductors in silicon process EM simulation reveals a concise Y-matrix60708090100 110 120 130-0.10.00.10.20.30.4Y11Y22 Y33Y21(Y12)Y13(Y31)|Y|(S)Frequency(GHz)Y23(Y32)-jcotQ-jcscR-
177、jcscR-jcotP-jcotP 00-jcscR-jcscR I1I2I3V1V2V3Y22 Y33 Y12(Y21)Y13(Y31)Y23(Y32)0M10(AP)M9M8M1M6P 2YoaYob+S 0R=2YoaYob-Q=YoaYob+32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International So
178、lid-State Circuits Conference16 of 36TCL-based Complementary-Gain-Boosting Technique Two identical TCLs are merged to construct a 3-port network Source port is cross connected to achieve gain-boosting L1and CC1are employed for magnitude and impedance tuningL1Cc1VIN-VIN+VbVOUT+VOUT-L1M10(AP)M9M8M1M6V
179、IN+VIN-VbL1L1Cc1VDD100m15m12m32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference17 of 36TCL-based Complementary-Gain-Boosting TechniqueL1Cc1VIN-VIN
180、+VbVOUT+VOUT-L1Cut-off frequency is dominatedby the electrical length Magnitude and impedance canbe tuned by L1and CC16080100120-404812Gmax(dB)Frequency(GHz)from 24 to 32L1=20pH Cc1=16fF6080100120-404812Gmax(dB)Frequency(GHz)L1 from 14pH to 22pHCC1=22fF=26 6080100120-404812Gmax(dB)Frequency(GHz)Cc1
181、from 4fF to 28fFL1=20pH=26 6080100120-200204060 Real(Zin)Imag(Zin)Input Impedance Zin()Frequency(GHz)L1=22pH CC1=22fF=26 32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-
182、State Circuits Conference18 of 36Hybrid TCL-based CGB Technique TCL with Large can be folded into a hybrid TCL network of the transmission line at source terminal is reduced by halfVbVINL2L2VOUT+VOUT-Cc2 Large at gate and drain for impedance matching Large at source decreases the cut-off frequencyCr
183、oss section viewCross section viewFolded 2 Hybrid TCL network32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference19 of 36Hybrid TCL-based CGB Techni
184、queThe hybrid TCL network is wound into a compact footprintThe gain at high frequency band is boostedHigh cut-off frequency and fine matching can be realizedVbVINL2L2VOUT+VOUT-Cc2L2L2Cc2VIN38m20m8mM10(AP)M9M8M1M6M76080100120-404812Gmax(dB)Frequency(GHz)CC2 from 0fF to 50fFL2=45pH=7.2 6080100120-40-3
185、0-20-10010S11(dB)Frequency(GHz)CC2 from 0fF to 50fFL2=45pH=7.2 32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference20 of 36Outline Introduction Comp
186、lementary-Gain-Boosting(CGB)Technique Three-coupled-line(TCL)network TCL-based CGB technique Hybrid TCL-based CGB technique Prototype Implementation Measurement Results Conclusions32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving
187、442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference21 of 36Prototype Implementation Input stage:Hybrid TCL-based CGB topology Driver stage:TCL-based CGB topology Power stage:Distributed balun output matchingVbVbVIN48m/60nm84pH84pH64fF51fF24m/60nm24m/60nm45pH45pHVb41p
188、H41pH48m/60nm26pH26pH20fF96m/60nm26fF26fF96m/60nmInput and driver stagesPower stageVout14fF32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference22 of
189、 36Chip Micrograph Process:65-nm bulk CMOS Core area:0.0392mm2 Supply:1.2 V0.28mm0.14mmInputOutput32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conferen
190、ce23 of 36Outline Introduction Complementary-Gain-Boosting(CGB)Technique Three-coupled-line(TCL)network TCL-based CGB technique Hybrid TCL-based CGB technique Prototype Implementation Measurement Results Conclusions32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary
191、-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference24 of 36Continuous-Wave(CW)Measurement SetupGSG1.0mm CableGSG1.0mm CableKeysight PNA-X N5222BKeysight N5293AX03Broadband Freq.ExtenderKeysight N5293AX03Broadband Freq.ExtenderDC Pow
192、erCascade GSG probeKeysight N5293AX03Keysight N5293AX03DUT and probesDC powerKeysight PNA-X N5222BMicrograph32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuit
193、s Conference25 of 36Small-Signal Measurement Results-3dB bandwidth from 67.8 to 108.2GHz 20.8dB peak power gain 42.1ps peak group delay variation60708090100110-30-20-100102030S11,S22 and S22(dB)Frequency(GHz)67.8-108.2 GHz S21 BW-3dB-60-40-200204060S12(dB)S21S22S11S12607080901001100153045607590Group
194、 Delay(ps)Frequency(GHz)42.1ps32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference26 of 36Large-Signal CW Measurement Results-10-5051015200510152025
195、Power Gain(dB)Output Power(dBm)Gain PAEPsat=15.1dBmP1dB=11.7dBmPAEmax=23.1%PAE1dB=11.0%fc=74 GHz0612182430PAE(%)-10-50510150510152025Power Gain(dB)Output Power(dBm)Gain PAEPsat=14.8dBmP1dB=11.1dBmPAEmax=21.2%PAE1dB=9.6%fc=84 GHz0612182430PAE(%)-10-50510150510152025Power Gain(dB)Output Power(dBm)Gain
196、 PAEPsat=14.2dBmP1dB=11.5dBmPAEmax=19.0%PAE1dB=10.4%fc=94 GHz0612182430PAE(%)-10-50510150510152025Power Gain(dB)Output Power(dBm)Gain PAEPsat=13.1dBmP1dB=9.0dBmPAEmax=14.9%PAE1dB=5.9%fc=104 GHz0612182430PAE(%)32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-
197、Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference27 of 36Large-Signal CW Measurement Results 15.1dBm Maximum Psat 11.7dBm Maximum OP1dB 23.1%peak PAE 11.0%Maximum PAE1dB60708090100110-10-505101520Psat OP1dB PAEmax PAE1dBPsat and OP1dB(d
198、Bm)Frequency(dBm)0102030405060PAEmax and PAE1dB(%)60708090100110-10-50510AM-PM()Frequency(GHz)AM-PM 3 over 68 to 96 GHzAM-PM 4.4 over 68 to 108 GHzMeasured OP1dB:AM-PM3 over 68 to 96 GHzAM-PM4.4 over the whole band32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-
199、Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference28 of 36Modulation Measurement SetupDC PowerAttenuatorAttenuatorGSGWR-12 waveguideGSGWR-12 waveguideMixer JFSEBM-001x6Mixer JFSEBM-001x6WR-12 waveguideAWGKeysight 8195ASpectrum Analy
200、zerR&S FSWCascade GSG probeSignal GeneratorCeyard 1465fDividerOscilloscopeMatlabDUTDUT is replaced by a THRU chip for the setup of without PA32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE
201、International Solid-State Circuits Conference29 of 36Modulation measurements1GSyms/s single-carrier 64QAM without DPDWO PA EVM=5.1%WI PA EVM=6.8%fc=74GHz64 QAM 6Gb/sPAPR=9dBPavg=6.5dBm32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achiev
202、ing 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference30 of 36Modulation measurements2GSyms/s single-carrier 64QAM without DPDWO PA EVM=6.0%WI PA EVM=7.7%fc=74GHz64 QAM 12Gb/sPAPR=9dBPavg=6.0dBm32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based
203、Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference31 of 36Outline Introduction Complementary-Gain-Boosting(CGB)Technique Three-coupled-line(TCL)network TCL-based CGB technique Hybrid TCL-based CGB technique Prototype I
204、mplementation Measurement Results Conclusions32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference32 of 36Performance Comparison *Estimated from the
205、reported figures.#Simulated results.V/E/W band W band E band V band This work Zhu,ISSCC22 Trinh,JSSC22 Kim,TMTT23 Callender,JSSC19 elik,TMTT21 elik,RFIC19 Nguyen,ISSCC19 Chu,JSSC21 Technology 65nm CMOS 65nm CMOS 65nm CMOS 28nm FDSOI 22nm FinFET 22nm FDSOI 22nm FDSOI 45nm SOI 16nm FinFET Supply(V)1.2
206、 1 1.2 3 1 0.8 1.6/2 2/1 0.95 Gain(dB)20.8 32.5 29.3 23.7 18.6 13.1 19.1 25 21.4 BW(GHz)40.4(67.8 to 108.2)9.7(92.2 to 101.9)4(82.7 to 86.7)10.3(97 to 107.3)24(62 to 86)21.9(61.8-83.7)17.9(64.6 to 82.5)12(53 to 65)13(51 to 64)GBW(GBW)442 409 117 158 204 99 161 213 153 Freq.(GHz)74 84 94 92 98 102 86
207、.4 99 70*75 85*65 75 80 76 56*60 64*65 OP1dB(dBm)11.7 11.1 11.5 26.8 28 26.5 16.2 12.3 7.0*5.7 2.9*8.4*9.3*9.6*13.3 NA 24.7 NA 13.5 Psat(dBm)15.1 14.8 14.2 31.5 32.1 31.6 19.1 15.1 12.0*12.8 11.1*12.7*13.6*14*17.8 28.9*29.1 29*17.9 PAEmax(%)23.1 21.2 19.0 14.5 15 14.3 8.6 18.6 22.6*26.3 21.5*9.1*13.
208、1*12.6*17.3 17.6*18.4 17.3*26.5 PAEP1dB(%)11.0 9.6 10.4 5.4 5.7 5.7 5 16.1 13.5*11.6 6.5*4.6*6.2*6.2*8.2 NA NA NA 15 AM-PM P1dB()4.3 NA NA 3.9 NA-2.50.6 3 NA 3#Freq.(GHz)74 74 NA NA NA 75 75 75 73 73 NA NA NA 65 65 65 Modulation(N-QAM)64 64 NA NA NA 16 16 64 64 256 NA 16 64 16 16 64 Bit-rate(Gb/s)6
209、12 NA NA NA 3 6 9 18 24 NA 8 12 4 6 6 EVM(%)6.8 7.7 NA NA NA 5.0 5.0 4.0 4.0 2.2 NA 6.6 4.4 9.2 8.3 6.9 Pout(dBm)6.5 6.0 NA NA NA 5.6 5 1.3 10.7 8.5 NA 22.5 20.9 13 11.8 9.8 Core Area(mm2)0.039 4.35 0.172 0.054 0.054 0.084 0.02 6.6 0.107 32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-L
210、ine-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference33 of 36Comparison to State-of-the-Art0204060801001200200400600800 CMOS PAs This WorkGBW(GHz)Frequency(GHz)ISSCC 22JSSC 18ISSCC 23JSSC 22JSSC 1702040608010012
211、004080120160200 CMOS PAs This WorkFractional Bandwidth(%)Frequency(GHz)ISSCC 19ISSCC 20TMTT 23JSSC 17TMTT 23IMS 18ISSCC 22ISSCC 21 Demonstration of 67.8108.2 GHz bandwidth and 442GHz GBWon CMOS process32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting
212、 Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference34 of 36Conclusion New design methodology for broadband mm-Wave PA TCL for gain-boosting and more design flexibility TCL-based CGB technique for gain complementary and bandwidth extension The wid
213、eband PABroad operation frequency from 67.8 to 108.2 GHzPeak power gain of 20.8 dB and GBW of 442 GHzPeak PAE of 23%High-fidelity multi-Gb/s high-speed data rate32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1
214、%Peak PAE 2024 IEEE International Solid-State Circuits Conference35 of 36Acknowledgment This work was supported by the National High TechnologyResearch and Development Program of China under Grant2021YFB2900403.The authors would like to sincerely thank Dr.GuangjianWang and Dr.Oupeng Li for the help
215、and advice on themeasurement.32.4:A 67.8-to-108.2GHz Power Amplifier with a Three-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference36 of 36Thank you!32.4:A 67.8-to-108.2GHz Power Amplifier with a Th
216、ree-Coupled-Line-Based Complementary-Gain-Boosting Technique Achieving 442GHz GBW and 23.1%Peak PAE 2024 IEEE International Solid-State Circuits Conference37 of 36Please Scan to Rate Please Scan to Rate This PaperThis Paper32.5:E-band(71-to-86GHz)GaN Power Amplifier with 4.37W Output Power and 18.5%
217、PAE for 5G Backhaul 2024 IEEE International Solid-State Circuits Conference1 of 24E-band(71-to-86GHz)GaN Power Amplifier with 4.37W Output Power and 18.5%PAE for 5G BackhaulBharath Cimbili1,2,3,M.Bao2,C.Friesicke1,and R.Quay1,3Fraunhofer IAF1,Ericsson Research2and University of Freiburg332.5:E-band(
218、71-to-86GHz)GaN Power Amplifier with 4.37W Output Power and 18.5%PAE for 5G Backhaul 2024 IEEE International Solid-State Circuits Conference2 of 24E-band(60-90 GHz)spectrum 71-76 GHz(Downlink)and 81-86 GHz(Uplink)Multi-Gb/s communication such asSatellite communications5G Backhaul radio links 32.5:E-
219、band(71-to-86GHz)GaN Power Amplifier with 4.37W Output Power and 18.5%PAE for 5G Backhaul 2024 IEEE International Solid-State Circuits Conference3 of 24E-band PA-Requirements Transmitted power determines the coverage areaEIRP=Pt Lc+GaMax allowed EIRP=85 dBm(55dBW)Current industry EIRP=70 dBm(Pt=20 d
220、Bm and Ga=50dBi)(*Pt=Tx output power;*Lc=Cable loss;*Ga=Antenna gain)32.5:E-band(71-to-86GHz)GaN Power Amplifier with 4.37W Output Power and 18.5%PAE for 5G Backhaul 2024 IEEE International Solid-State Circuits Conference4 of 24E-band PA-Requirements Transmitted power determines the coverage areaCur
221、rent industry EIRP=70 dBm(Pt=20 dBm and Ga=50dBi)Cost of transmission impacted by efficiency 32.5:E-band(71-to-86GHz)GaN Power Amplifier with 4.37W Output Power and 18.5%PAE for 5G Backhaul 2024 IEEE International Solid-State Circuits Conference5 of 24E-band PA Prior art PSATBW-1dB of prior-art 21 d
222、B between 68-86 GHz32.5:E-band(71-to-86GHz)GaN Power Amplifier with 4.37W Output Power and 18.5%PAE for 5G Backhaul 2024 IEEE International Solid-State Circuits Conference18 of 24E-band PA-On-wafer Measurement resultsS-parameter resultsS11and S22better than-15dB;S2121 dB between 68-86 GHzLarge-signa
223、l resultsConsistent across wafers,with PSATvariation below 2.2%32.5:E-band(71-to-86GHz)GaN Power Amplifier with 4.37W Output Power and 18.5%PAE for 5G Backhaul 2024 IEEE International Solid-State Circuits Conference19 of 24E-band PA-On-carrier Measurement resultsSelected samples from Wafer 2 glued o
224、n a metal carrierPower sweep response across 71-86 GHz shownPSAT=36.4 dBm and Peak PAE=18.5%32.5:E-band(71-to-86GHz)GaN Power Amplifier with 4.37W Output Power and 18.5%PAE for 5G Backhaul 2024 IEEE International Solid-State Circuits Conference20 of 24E-band PA-On-carrier Measurement resultsPower sw
225、eep response across 71-86 GHz shownPSAT=36.4 dBm and Peak PAE=18.5%Frequency sweep response with varied supply voltagePSAT maintains above 33 dBm across 68-86 GHz even at VDD=10V32.5:E-band(71-to-86GHz)GaN Power Amplifier with 4.37W Output Power and 18.5%PAE for 5G Backhaul 2024 IEEE International S
226、olid-State Circuits Conference21 of 24Comparision with prior-artDemonstrates higher PAE across multiple frequencies32.5:E-band(71-to-86GHz)GaN Power Amplifier with 4.37W Output Power and 18.5%PAE for 5G Backhaul 2024 IEEE International Solid-State Circuits Conference22 of 24Comparision with prior-ar
227、tDemonstrates higher PAE across multiple frequenciesDemonstrates higher PSATacross 73-85 GHz32.5:E-band(71-to-86GHz)GaN Power Amplifier with 4.37W Output Power and 18.5%PAE for 5G Backhaul 2024 IEEE International Solid-State Circuits Conference23 of 24Comparision with prior-art1.84xPSATBW-1dB and 1.
228、21xPAE compared to MWCL23 at Supply=14V32.5:E-band(71-to-86GHz)GaN Power Amplifier with 4.37W Output Power and 18.5%PAE for 5G Backhaul 2024 IEEE International Solid-State Circuits Conference24 of 24Summary and OutlookPresented a pre-transformed DMN/combiner for IMNSignificantly improves the bandwid
229、thCompact and Low-lossHigh-power and High-efficiency E-band PA demonstratedLinearity measurements ongoing with E-band radio Demonstrate a long-range E-band radio link32.5:E-band(71-to-86GHz)GaN Power Amplifier with 4.37W Output Power and 18.5%PAE for 5G Backhaul 2024 IEEE International Solid-State C
230、ircuits Conference25 of 24Please Scan to Rate Please Scan to Rate This PaperThis Paper 2024 IEEE International Solid-State Circuits Conference32.6:A 76-to-81GHz Direct Digital 7b 14GS/s Double-Balanced I/Q Mixing-DAC Radar-Waveform Synthesizer 2024 IEEE International Solid-State Circuits Conference1
231、 of 28A 76-to-81GHz Direct Digital 7b 14GS/s Double-Balanced I/Q Mixing-DAC Radar-Waveform SynthesizerMarios Neofytou1,2,Kostas Doris1,2,Marcello Ganzerli1,Maarten Lont1,Georgi Radulov21NXP Semiconductors2Eindhoven University of Technology32.6:A 76-to-81GHz Direct Digital 7b 14GS/s Double-Balanced I
232、/Q Mixing-DAC Radar-Waveform Synthesizer 2024 IEEE International Solid-State Circuits Conference2 of 28Outline Motivation Direct conversion 76-to-81GHz I/Q Mixing-DAC Measurement results Conclusions32.6:A 76-to-81GHz Direct Digital 7b 14GS/s Double-Balanced I/Q Mixing-DAC Radar-Waveform Synthesizer
233、2024 IEEE International Solid-State Circuits Conference3 of 28Outline Motivation Direct conversion 76-to-81GHz I/Q Mixing-DAC Measurement results Conclusions32.6:A 76-to-81GHz Direct Digital 7b 14GS/s Double-Balanced I/Q Mixing-DAC Radar-Waveform Synthesizer 2024 IEEE International Solid-State Circu
234、its Conference4 of 28Demand for high performance radarsMotorcycleclose to truckPedestrian in crowded street Extended detection range in highway settingsDetect and separate small objects in far distance Environmental mapping in urban settingsDetect,separate and classify densely spaced objectsBicycle
235、neartraffic light32.6:A 76-to-81GHz Direct Digital 7b 14GS/s Double-Balanced I/Q Mixing-DAC Radar-Waveform Synthesizer 2024 IEEE International Solid-State Circuits Conference5 of 28Demand for high performance radarsMotorcycleclose to truckPedestrian in crowded street Extended detection range in high
236、way settingsDetect and separate small objects in far distance Environmental mapping in urban settingsDetect,separate and classify densely spaced objectsBicycle neartraffic lightNeeds range,velocity and angular resolution32.6:A 76-to-81GHz Direct Digital 7b 14GS/s Double-Balanced I/Q Mixing-DAC Radar
237、-Waveform Synthesizer 2024 IEEE International Solid-State Circuits Conference6 of 28Angular resolution Angular detection requires multiple antennasCapability to resolve two targets at the same radial distance and velocityIn 250m distance,4m separation requires 100 antenna elementsHigh complexity,are
238、a and power dissipation=/32.6:A 76-to-81GHz Direct Digital 7b 14GS/s Double-Balanced I/Q Mixing-DAC Radar-Waveform Synthesizer 2024 IEEE International Solid-State Circuits Conference7 of 28With additional TX antennas a virtual array of can be constructed Condition:TX signals must be uniquely identif
239、ied at the RX Equivalent virtual array +ReferenceAdd TX2Virtual array principle and MIMO32.6:A 76-to-81GHz Direct Digital 7b 14GS/s Double-Balanced I/Q Mixing-DAC Radar-Waveform Synthesizer 2024 IEEE International Solid-State Circuits Conference8 of 28Waveform orthogonalitySlow-time Doppler division
240、/Code division Multiple accessRobustness to self-interferenceDDMA:Reduces maximum unambiguous velocity CDMA:Increases noise level in Doppler spectrumFast-time code division(Fully digital waveform)Sensitive to self-interferenceRelies on wideband baseband circuitry Longer codes,extended MIMO capabilit
241、y32.6:A 76-to-81GHz Direct Digital 7b 14GS/s Double-Balanced I/Q Mixing-DAC Radar-Waveform Synthesizer 2024 IEEE International Solid-State Circuits Conference9 of 28Architectural optionsTwo-point modulation ADPLLDDS-Intermediate frequency(IF)DDS-Direct conversion1.Limited flexibility for waveform sy
242、nthesis1.Need for high-relative-bandwidth bandpass filters with substantial losses2.I/Q mixing-DAC with low FC/FS ratio leads to DAC image folding in-band 3.Additional mixing stage requiredThis work:1.Direct conversion2.High FC/FS ratio eliminates DAC image folding3.High sampling rate to address out
243、 of band emissions2 H.Shanan ISSCC 2022,3 Z.Shen ISSCC 2021,7 S.K.Sireesh ISSCC 202332.6:A 76-to-81GHz Direct Digital 7b 14GS/s Double-Balanced I/Q Mixing-DAC Radar-Waveform Synthesizer 2024 IEEE International Solid-State Circuits Conference10 of 28Outline Motivation Direct conversion 76-to-81GHz I/
244、Q mixing-DAC Measurement results Conclusions32.6:A 76-to-81GHz Direct Digital 7b 14GS/s Double-Balanced I/Q Mixing-DAC Radar-Waveform Synthesizer 2024 IEEE International Solid-State Circuits Conference11 of 28Direct conversion 76-to-81GHz Mixing-DAC40GHz fixed-frequency LO signal and CLOCK supplied
245、off-chipQuadrature signal generation32:1 high speed serializer7-bit binary weighted I/Q mixing-DAC32.6:A 76-to-81GHz Direct Digital 7b 14GS/s Double-Balanced I/Q Mixing-DAC Radar-Waveform Synthesizer 2024 IEEE International Solid-State Circuits Conference12 of 28Direct conversion 76-to-81GHz Mixing-
246、DACWideband two-stage transformer-based I/Q hybrid Accommodate FMCW and digital-waveform frequency plansMaximum phase error variation from-76-to-81GHz 1o32.6:A 76-to-81GHz Direct Digital 7b 14GS/s Double-Balanced I/Q Mixing-DAC Radar-Waveform Synthesizer 2024 IEEE International Solid-State Circuits
247、Conference13 of 28Direct conversion 76-to-81GHz Mixing-DACHalf rate final 2:1 serializerReduce clock circuitry power dissipation and timing requirementsBased entirely on transmission gatesUp to 17Gbits/s when synthesizing digital waveforms32.6:A 76-to-81GHz Direct Digital 7b 14GS/s Double-Balanced I
248、/Q Mixing-DAC Radar-Waveform Synthesizer 2024 IEEE International Solid-State Circuits Conference14 of 28Direct conversion 76-to-81GHz Mixing-DAC7-bit binary weighted double-balanced I/Q mixing-DACUses only two stacked devices to implement both mixing and DA functionsCode independent input/output imp
249、edance,supply current and LO feedthrough Eliminates complex time alignment of phase and amplitude paths 32.6:A 76-to-81GHz Direct Digital 7b 14GS/s Double-Balanced I/Q Mixing-DAC Radar-Waveform Synthesizer 2024 IEEE International Solid-State Circuits Conference15 of 28Outline Motivation Direct conve
250、rsion 76-to-81GHz I/Q Mixing-DAC Measurement results FMCW chirp measurementsQAM measurements Conclusions32.6:A 76-to-81GHz Direct Digital 7b 14GS/s Double-Balanced I/Q Mixing-DAC Radar-Waveform Synthesizer 2024 IEEE International Solid-State Circuits Conference16 of 2828nm Die Micrograph and Measure
251、ment SetupTotal analog area:0.81mm2,I/Q mixing-DAC area:0.11mm2 Clock,SPI,ATB and supply I/Os bonded on PCB40GHz IN and 80GHz OUT probed32.6:A 76-to-81GHz Direct Digital 7b 14GS/s Double-Balanced I/Q Mixing-DAC Radar-Waveform Synthesizer 2024 IEEE International Solid-State Circuits Conference17 of 2
252、8CW measurements:spurs I/Q image,LO leakage,HD2/3 better than-42dBc,-37dBc,-43dBc and-42dBc respectively up to FS/232.6:A 76-to-81GHz Direct Digital 7b 14GS/s Double-Balanced I/Q Mixing-DAC Radar-Waveform Synthesizer 2024 IEEE International Solid-State Circuits Conference18 of 28CW measurements:phas
253、e noise At 1MHz,-122.5dBc/Hz dominated by signal source At 100MHz,-136dBc/Hz dominated by spectrum analyzer80.324GHz MODULATOR OUT39.25GHz LO IN32.6:A 76-to-81GHz Direct Digital 7b 14GS/s Double-Balanced I/Q Mixing-DAC Radar-Waveform Synthesizer 2024 IEEE International Solid-State Circuits Conferenc
254、e19 of 28FMCW chirp measurements:SpectrumChirps generated in the upper sideband and digitally centered at a 2.5GHz offset from the carrier Single-sideband modulation in combination with FS=12.8GS/sNext DAC image center frequency 12.8GHz away from fundamental chirpChirp BW:1GHz Chirp duration:5.12sCh
255、irp BW:2GHz Chirp duration:5.12sChirp BW:4GHz Chirp duration:5.12s32.6:A 76-to-81GHz Direct Digital 7b 14GS/s Double-Balanced I/Q Mixing-DAC Radar-Waveform Synthesizer 2024 IEEE International Solid-State Circuits Conference20 of 28FMCW chirp measurements:Baseband chirpsChirp slope up to 780MHz/sLarg
256、er IF separation in close range scenariosMeasured settling time 3.2dB)Large area Only static VSWR Comprise peak efficiency and linearity Only static VSWR Comprise peak efficiency and linearity Gain/Power is sensitive to QHC mismatch Limited linearity 7 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resil
257、ient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceWhat do we propose?We propose the chain-weaver balanced power amplifier architectureEight-way power combining to achieve 26dBm peak powerOutput matching to limit the
258、 gain/power variation to the reflection loss8 of 46Gain/power variation equal to the reflection loss(1|2)32.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceWhat do we propose
259、?We propose the chain-weaver balanced power amplifier architectureEight-way power combining to achieve 26dBm peak powerOutput matching to limit the gain/power variation to the reflection lossLow gain/power and linearity variation over a VSWR circle9 of 46Gain/power variation equal to the reflection
260、loss(1|2)Less linearity variationVSWR 3:1iP1dB32.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceWhat do we propose?We propose the chain-weaver balanced power amplifier archi
261、tectureEight-way power combining to achieve 26dBm peak powerOutput matching to limit the gain/power variation to the reflection lossLow gain/power and linearity variation over a VSWR circleAn embedded impedance/power sensor for potential further correctionsIncluded an impedance/power sensorThis Chip
262、OMN:Output matching networkIPS:Impedance/Power sensor10 of 46Gain/power variation equal to the reflection loss(1|2)Less linearity variationVSWR 3:1iP1dB32.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International So
263、lid-State Circuits ConferenceOutline Introduction Chain-Weaver Balanced Power Amplifier The Embedded Impedance/Power Sensor Circuit Implementations Measurement Results50 Load MeasurementsVSWR MeasurementsImpedance Sensor Measurements Conclusion11 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient C
264、hain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceConventional Eight-Way Balanced PA02222222223280Forward waves of the PAs to be combined constructively at the output12 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient
265、Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceConventional Eight-Way Balanced PA022222222232800 2 2 22 2 22 22 328012345678=1=2=3=4=3=3=4=4=0Forward waves of the PAs to be combined constructively at the outputThe ref
266、lected waves from antenna with impedance mismatch The load seen by PAs are eitheror 13 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceSingle Branch PAConventional Ba
267、lanced PAN-Way Chain-Weaver PA The PA sees 360 different loads Performance varies over those VSWR angles The PAs see 180 different loads Performance is the average of PAs with two different loads The PAs see 360different loads distributed on a circle Performance is the average of PAs with N differen
268、t loadsMoving on the VSWR Circle with 1 Angle Increment14 of 46032.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits Conference81616058986810811815848Proposed Eight-Way Chain-Weaver Bala
269、nced PA80Forward waves of the Chain-Weaver PA to be combined constructively15 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits Conference8161681616058986810811815848Proposed Eig
270、ht-Way Chain-Weaver Balanced PA800 48 58 98 68 108 118 1588012345678=1=02=1803=2254=453=2703=3154=1354=900Forward waves of the Chain-Weaver PA to be combined constructivelyThe reflected waves from antenna mismatch The loads are distributed on a circle like a chain16 of 4632.7:A 25.2dBm PSAT,35-to-43
271、GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceProposed Eight-Way Chain-Weaver Balanced PA8161605898681081181584880 By moving VSWR angle,the chain-weaver Balanced PAs loading conditions are circling
272、 around the optimum load!=0.50=0.5135=0.5270=0.50=0.5135=0.5270Conventional balanced PAs loading conditions under VSWR 3:1Chain-weaver balanced PAs loading conditions under VSWR 3:117 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Po
273、wer Sensor 2024 IEEE International Solid-State Circuits ConferenceOutline Introduction Chain-Weaver Balanced Power Amplifier The Embedded Impedance/Power Sensor Circuit Implementations Measurement Results50 Load MeasurementsVSWR MeasurementsImpedance Sensor Measurements Conclusion18 of 4632.7:A 25.2
274、dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits Conference816168Proposed Impedance/Power SensorThe first combining stage=|2143Since the first combining stage are matched,we can consider them a
275、s ideal ports,where their forward signals are independent from the reflected signals19 of 46Port2Port1Port4Port3DET2DET1DET4DET3202|832.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits
276、ConferenceProposed Impedance/Power SensorThe forward(Vf)and reverse(Vr)waves at four portsAdding 8TL offers two more equationsGiven these four equations we can calculate the three variables(,&)20 of 46Port2Port1Port4Port3DET2DET1DET4DET3202|832.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weave
277、r Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceProposed Impedance/Power Sensor21 of 46Port2Port1Port4Port3DET2DET1DET4DET3202|8The equations for calculating the antenna impedance and output power32.7:A 25.2dBm PSAT,35-to-43GHz V
278、SWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceOutline Introduction Chain-Weaver Balanced Power Amplifier The Embedded Impedance/Power Sensor Circuit Implementations Measurement Results50 Load Measuremen
279、tsVSWR MeasurementsImpedance Sensor Measurements Conclusion22 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceTop-Level View of the Chain-Weaver Balanced PA 658724365
280、872143P2P12V1V2V1V1V50505050505050GGRFIN/8/16/16/16/8420mLateral view of the metalsCu:3.4mAl:1.45mCu:0.85mRFOUT1505050505050501VQHC1:Transformer based QHC540m420m81616850505050505050 The first stage of combining with transformer-based QHCs and/16 TLs23 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resil
281、ient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceTop-Level View of the Chain-Weaver Balanced PA 658724365872143P2P12V1V2V1V1V50505050505050GGRFIN/8/16/16/16/8420mLateral view of the metalsCu:3.4mAl:1.45mCu:0.85mRFO
282、UT1505050505050501VWWS540m420m81616850505050505050QHC2Width5mSpacing1mLength420mCoupling0.792QHC2:Coupled lines QHC with high coupling The second stage of combining with coupled-line QHCs and a/8 TL24 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embe
283、dded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceTop-Level View of the Chain-Weaver Balanced PA 658724365872143P2P12V1V2V1V1V5050505050GGRFIN/8/16/16/16/8420mLateral view of the metalsCu:3.4mAl:1.45mCu:0.85mRFOUT1505050505050501VWWS540m420mQHC3Width10mSpacing1.6mLen
284、gth540mCoupling0.753816168505050505050505050QHC3:Coupled lines QHC with high coupling The last stage of combining with a coupled-line QHC25 of 46Total loss=2.63 dB32.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE Inter
285、national Solid-State Circuits ConferenceTop-Level View of the Chain-Weaver Balanced PA 658724365872143P2P12V1V2V1V1V5050505050GGRFIN/8/16/16/16/8420mLateral view of the metalsCu:3.4mAl:1.45mCu:0.85mRFOUT1505050505050501V540m420m816168505050505050505050Cascode PAs1.6V400m400m The neutralized cascode
286、PAs with series inductors to enhance PAE 26 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceTop-Level View of the Chain-Weaver Balanced PA 658724365872143P2P12V1V2V1V
287、1V5050505050GGRFIN/8/16/16/16/8420mLateral view of the metalsCu:3.4mAl:1.45mCu:0.85mRFOUT1505050505050501V540m420m816168505050505050505050Common-source pre-drivers and drive-amplifiersWPre-Driver 1160mPre-Driver 2320mDriver200mW The neutralized common-source pre-drivers and drive amplifiers 27 of 46
288、32.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceTop-Level View of the Chain-Weaver Balanced PA 658724365872143P2P12V1V2V1V1V5050505050GGRFIN/8/16/16/16/8420mLateral view o
289、f the metalsCu:3.4mAl:1.45mCu:0.85mRFOUT1505050505050501V540m420m816168505050505050505050rms Voltage Detectors 10m Four rms voltage detectors for impedance/power sensing 28 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor
290、2024 IEEE International Solid-State Circuits ConferencePrototype ImplementationChip microphotograph-40nm CMOS process-2.08mm2core and 3.06mm2die areaKey features-Time/frequency dependent VSWR resilience-Eight-way power combining to achieve 25dBm peak power-Embedded impedance/power sensor29 of 4632.7
291、:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceOutline Introduction Chain-Weaver Balanced Power Amplifier The Embedded Impedance/Power Sensor Circuit Implementations Measurem
292、ent Results50 Load MeasurementsVSWR MeasurementsImpedance Sensor Measurements Conclusion30 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceMeasurement SetupS-paramete
293、r and CW-E8361A for small-signal-Att+power meter for CWVSWR-The tuner is characterized on the tip of the output probe-Due to probe and connection losses,the VSWR could be measured up to 3:1-External current sources to bias rms detectors31 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Wea
294、ver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceSmall-Signal and Large-Signal CW Measurement ResultsS2222dBm in the 36-to-42GHz band16.18%25.19dBm32 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Bal
295、anced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits Conference1-CC 0.8/2GHz OFDM Signal Measurement Results64-QAM OFDM,Modulation BW=2GHz,PAPR9.2dB,EVM-25dB,without DPDFC=37GHzACLR=-30.7dBcFC=38GHzACLR=-29.8dBcFC=39GHzACLR=-30dBcFC=40GHzACLR=-30.8dBcPavg=16d
296、BmPAEavg=4.1%Pavg=15.5dBmPAEavg=3.7%Pavg=15.08dBmPAEavg=3.3%Pavg=14.1dBmPAEavg=2.6%256-QAM OFDM,Modulation BW=800MHz,PAPR9.6dB,EVM-30.5dB,without DPDFC=37GHzACLR=-33.3dBcFC=38GHzACLR=-32.7dBcFC=39GHzACLR=-33.8dBcFC=40GHzACLR=-34dBcPavg=12.17dBmPAEavg=1.93%Pavg=11.78dBmPAEavg=1.65%Pavg=11.53dBmPAEavg
297、=1.5%Pavg=10.8dBmPAEavg=1.3%33 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceLarge-Signal CW Measurement Results under VSWR 3:1The PA shows less than 0.7dB gain dev
298、iation and 0.79dB P1dBdeviation,under VSWR 3:1VSWR 3:1VSWR 3:10.7dB-0.79dB34 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceLarge-Signal CW Measurement Results under
299、 VSWRThe gain and P1dBvariations are 2.5dB and 2.1dB,respectively,which include the mismatch loss(1.249dB for VSWR 3:1)maxminaverage2.5dB2.1dB35 of 4637 GHz32.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE Internationa
300、l Solid-State Circuits ConferenceVSWR 1.5:1VSWR 2:1VSWR 2.5:1VSWR 3:1iP1dBAM-PM Measurement Results under VSWR at 38GHz Chain-Weaver Balanced PA offers a robust AM-PM under VSWR36 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power
301、Sensor 2024 IEEE International Solid-State Circuits ConferenceAM-PM Measurement Results under VSWR The maximum AM-PM deviations at P1dBoutput power levels over VSWR at various frequencies is only 2.82.837 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an
302、Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceImpedance Sensing Measurement ResultsMeasured reflection coefficient(solid)of the load using proposed impedance sensor compared to ideal reflection coefficient(dotted)37GHz40GHz38 of 4632.7:A 25.2dBm PSAT,35-to-43
303、GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceImpedance Sensing Measurement ResultsThe maximum magnitude error is 0.106 at 37GHz for VSWR 3:1,while the worst angle error is 12.3 at the same frequen
304、cy for VSWR 1.5:1VSWR 3:1VSWR 2.5:1VSWR 2:1VSWR 1.5:10.10612.339 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceOutline Introduction Chain-Weaver Balanced Power Ampl
305、ifier The Embedded Impedance/Power Sensor Circuit Implementations Measurement Results50 Load MeasurementsVSWR MeasurementsImpedance Sensor Measurements Conclusion40 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEE
306、E International Solid-State Circuits ConferencePerformance Comparison:Chain-Weaver Balanced PAMm-Wave 5G PAsEfficiency Enhanced PAs/TXsParameterThis WorkZengISSCC 2023WangISSCC 2020AhnRFIC 2020DasguptaRFIC 2019QunajISSCC 2021PashaeifarJSSC 2021MannemISSCC 2020ChappidiVLSI 19ArchitectureChain-Weaver
307、Eight-Way Balanced PATwo-Stage PA w Feedback LinearityCompensated Distributed BalunEight-Way Power CombinerFour-way DAT based CombinerDoherty-Like LMBATX with Doherty Balanced PAReconfigurable Doherty PABroadband Doherty PATechnology40nm CMOS28nm CMOS45nm SOI65nm CMOS65nm CMOS28nm CMOS40nm CMOS45nm
308、SOI65nm CMOSCore Area(mm2)2.080.1060.210.250.9451.44(Die size)1.381.181.35(Die size)Supply(V)1,20.9,1.82NR2.2111,21.1Frequency(GHz)35 to 4319.7 to 43.825.8 to 43.428393624 to 303926 to 42Gain(dB)29.9(37GHz)20.518.9(37GHz)15.9381821.8(TX gain)12.4*13.5*P1dB(dBm)22.67(37GHz)17.6(37GHz)18.9(37GHz)2221.
309、519.62020.219.2(33GHz)Psat(dBm)25.19(37GHz)19.3(37GHz)20(37GHz)23.22622.6NA20.819.6(33GHz)PAEsat(%)16.18(37GHz)2738.7(37GHz)33.526.6323133.324(33GHz)S22(dB)-20-3.5-4*-1*-5.8-19*-12*-22.2-9*NA41 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Im
310、pedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferencePerformance Comparison:Chain-Weaver Balanced PAMm-Wave 5G PAsEfficiency Enhanced PAs/TXsParameterThis WorkZengISSCC 2023WangISSCC 2020AhnRFIC 2020DasguptaRFIC 2019QunajISSCC 2021PashaeifarJSSC 2021MannemISSCC 2020ChappidiVLS
311、I 19ArchitectureChain-WeaverEight-WayBalanced PATwo-Stage PA w Feedback LinearityCompensated Distributed BalunEight-Way Power CombinerFour-wayDAT based CombinerDoherty-Like LMBATX with Doherty Balanced PAReconfigurable Doherty PABroadband Doherty PAModulation Bandwidth(GHz)20.80.20.80.10.0530.80.52M
312、odulationOFDM64-QAMOFDM256-QAMOFDM64-QAMOFDM64-QAM256-QAMOFDM64-QAM64-QAMOFDM64-QAM64-QAMOFDM64-QAMEVMrms(dB)-25-30.3-25.1(37GHz)-25.1(37GHz)-31.2-32*-25.1-27.1-22.9-24(37GHz)ACLR(dBc)-30.7-33.3-24.1(37GHz)-27.8(37GHz)-30-33NA-32-25.4-25(37GHz)Pavg(dBm)1612.178.7(37GHz)10.2(37GHz)18.214.715.58.412.2
313、10.2(37GHz)PAEavg(%)4.11.935.4(37GHz)13.6(37GHz)17.6NA2010.8#16.19.8(37GHz)VSWR3:137 to 40GHzNANANANANA3:127 to 28GHz3:14:1Gain Deviation (dB)0.7NANANANANA0.650.91.3*NAP1dBDeviation (dB)0.79NANANANANANA0.30.4*1*AM-PMmax()2.80NANANANANANANANA42 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chai
314、n-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferencePerformance Comparison:Embedded Impedance SensorMm-Wave/RF Impedance SensorsParameterThis WorkMunzerISSCC 2022ZhangISSCC 2021MunzerMWCL 2021LuISSCC 2017Technology40nm CMOS45n
315、m SOI22nm SOI45nm SOI40nm CMOSVSWR3:13333Frequency(GHz)37 to 4027 to 4128382.4 Detection Max Mag Error0.1060.149(37GHz)0.140.2380.1 Detection Max Phase Error12.318.72(37GHz)3328.91843 of 4632.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Po
316、wer Sensor 2024 IEEE International Solid-State Circuits ConferenceWhat is the Key Achievement?Measurement results for a single-branch PAVSWR 3:1Measurement results for the Chain-Weaver balanced PAVSWR 3:1The proposed Chain-Weaver balanced PA offers an excellent linearity robustness under VSWR!44 of
317、46M.Pashaeifar,RFIC 2232.7:A 25.2dBm PSAT,35-to-43GHz VSWR-Resilient Chain-Weaver Eight-Way Balanced PA with an Embedded Impedance/Power Sensor 2024 IEEE International Solid-State Circuits ConferenceConclusion The time/frequency dependent VSWR issue is discussed The Chain-Weaver balanced PA is intro
318、ducedEight-way broadband power combining achieving 25.2dBm peak output power Gain and P1dB robustness under VSWRSupporting VSWR 1:1 to 3:1 in the 37-to-40GHz band with 25.4dBm Psat 22%peak PAE32.8:A 27.8-to-38.7GHz Load-Modulated Balanced Power Amplifier with Scalable 7-to-1 Load-Modulated Power-Com
319、bine Network Achieving 27.2dBm Output Power and 28.8%/23.2%/16.3%/11.9%Peak/6/9/12dB Back-Off Efficiency 2024 IEEE International Solid-State Circuits Conference30 of 36Measurements 4.5Gb/s 64-QAM Signal at 28GHzRMS EVM=-26.8dBRMS MER=-28.1dB Frequency=28GHz Baud Rate=750MSym/s Roll-off factor=0.3 AC
320、PR=-32.7dBSingle-carrier 4.5Gb/s 64QAMPavg=17.3dBmPAEavg=13.9%28-GHz Band32.8:A 27.8-to-38.7GHz Load-Modulated Balanced Power Amplifier with Scalable 7-to-1 Load-Modulated Power-Combine Network Achieving 27.2dBm Output Power and 28.8%/23.2%/16.3%/11.9%Peak/6/9/12dB Back-Off Efficiency 2024 IEEE Inte
321、rnational Solid-State Circuits Conference31 of 36Measurements 4.5Gb/s 64-QAM Signal at 38GHzRMS EVM=-26.6dBRMS MER=-27.7dB38-GHz Band Frequency=38GHz Baud Rate=750MSym/s Roll-off factor=0.3 ACPR=-31.1dBSingle-carrier 4.5Gb/s 64QAMPavg=19.2dBmPAEavg=18.2%32.8:A 27.8-to-38.7GHz Load-Modulated Balanced
322、 Power Amplifier with Scalable 7-to-1 Load-Modulated Power-Combine Network Achieving 27.2dBm Output Power and 28.8%/23.2%/16.3%/11.9%Peak/6/9/12dB Back-Off Efficiency 2024 IEEE International Solid-State Circuits Conference32 of 36Measurements Highest PAEmaxand PAE at PBO Among the reported PA/TXs op
323、erating at 30GHzJSSC1928GRFIC1732GJSSC2338GVLSI1937GISSCC20Mannem39GISSCC2136GISSCC20Li28GISSCC2228GCICC2338GISSCC20Wang28GThis Work39GJSSC1928GJSSC2338GVLSI1937GISSCC20Mannem39GISSCC2136GISSCC20Li28GISSCC2228GCICC2338GISSCC20Wang28GThis Work39GBetterBetter32.8:A 27.8-to-38.7GHz Load-Modulated Balan
324、ced Power Amplifier with Scalable 7-to-1 Load-Modulated Power-Combine Network Achieving 27.2dBm Output Power and 28.8%/23.2%/16.3%/11.9%Peak/6/9/12dB Back-Off Efficiency 2024 IEEE International Solid-State Circuits Conference33 of 36Measurements*Graphically estimated#Drain efficiency+Core area Perfo
325、rmance summary and comparison with prior-art mm-waveactive load-modulated PA/TXs32.8:A 27.8-to-38.7GHz Load-Modulated Balanced Power Amplifier with Scalable 7-to-1 Load-Modulated Power-Combine Network Achieving 27.2dBm Output Power and 28.8%/23.2%/16.3%/11.9%Peak/6/9/12dB Back-Off Efficiency 2024 IE
326、EE International Solid-State Circuits Conference34 of 36Outline Motivation Architecture Circuit Implementation Measurements Conclusion32.8:A 27.8-to-38.7GHz Load-Modulated Balanced Power Amplifier with Scalable 7-to-1 Load-Modulated Power-Combine Network Achieving 27.2dBm Output Power and 28.8%/23.2
327、%/16.3%/11.9%Peak/6/9/12dB Back-Off Efficiency 2024 IEEE International Solid-State Circuits Conference35 of 36Conclusion First reported multiway load-modulated balanced architecture Scalable N-way power-combining and load-modulation technique Highest PAEmaxand PAE at PBO Well-suited for broadband hi
328、gh-speed wireless communication links32.8:A 27.8-to-38.7GHz Load-Modulated Balanced Power Amplifier with Scalable 7-to-1 Load-Modulated Power-Combine Network Achieving 27.2dBm Output Power and 28.8%/23.2%/16.3%/11.9%Peak/6/9/12dB Back-Off Efficiency 2024 IEEE International Solid-State Circuits Confe
329、rence36 of 36THANK YOU!32.8:A 27.8-to-38.7GHz Load-Modulated Balanced Power Amplifier with Scalable 7-to-1 Load-Modulated Power-Combine Network Achieving 27.2dBm Output Power and 28.8%/23.2%/16.3%/11.9%Peak/6/9/12dB Back-Off Efficiency 2024 IEEE International Solid-State Circuits Conference37 of 36P
330、lease Scan to Rate Please Scan to Rate This PaperThis Paper32.9:An Ultra-Compact 28GHz Doherty Power Amplifier with an Asymmetrically-Coupled-Transformer Output Combiner 2024 IEEE International Solid-State Circuits Conference1 of 26An Ultra-Compact 28GHz Doherty Power Amplifier with an Asymmetricall
331、y-Coupled-Transformer Output CombinerEdward Liu1,2and Hua Wang11ETH Zurich,Switzerland 2Georgia Institute of Technology,Atlanta,GA32.9:An Ultra-Compact 28GHz Doherty Power Amplifier with an Asymmetrically-Coupled-Transformer Output Combiner 2024 IEEE International Solid-State Circuits Conference2 of
332、 26Outline Motivation and Challenges Compact Transformer Output Network Circuit Implementation Measurements Conclusion32.9:An Ultra-Compact 28GHz Doherty Power Amplifier with an Asymmetrically-Coupled-Transformer Output Combiner 2024 IEEE International Solid-State Circuits Conference3 of 26Outline M
333、otivation and Challenges Compact Transformer Output Network Circuit Implementation Measurements Conclusion32.9:An Ultra-Compact 28GHz Doherty Power Amplifier with an Asymmetrically-Coupled-Transformer Output Combiner 2024 IEEE International Solid-State Circuits Conference4 of 26Introduction Complex modulation used for spectrum efficiency OFDM High peak-to-average power ratio Power Amplifiers must